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1. Introduction 

Recently, an ultrasound diagnosis has been 
established and utilized. The use of nonlinear 
oscillations of contrast agent microbubbles (e.g., 
Sonazoid, Levovist, etc.) significantly improves the 
resolution of image (e.g., [1]). Such microbubbles 
should be produced as quite small compared with a 
diameter of blood vessel. However, an error of 
diameter of such a small microbubble cannot be 
avoided in the production process.  

Although nonlinear propagation of ultrasound 
in liquids containing many microbubbles has long 
been theoretically studied, initial radius of 
microbubbles has been treated as the same (e.g., [2]). 
From the viewpoint of contrast agent microbubble 
production, a small error of diameter of 
microbubbles should be incorporated in theories.  

The purpose of this study is to investigate 
nonlinear propagation of ultrasound in bubbly 
liquids with a small initial polydispersity of bubble 
size. Especially, we do not assume explicitly 
function form of initial bubble radius toward an 
utilization into broad applications.  

 
2. Theoretical Analysis 
2.1 Problem and assumption 

One-dimensional propagation of pressure 
wave (or ultrasound) in initially quiescent liquids 
uniformly containing many spherical microbubbles 
with an initial polydispersity of bubble size is 
theoretically studied. The polydispersity appears in a 
field far from the sound source. Bubble oscillations 
are spherically symmetric, and bubbles do not 
coalesce, break up, appear, and disappear.  

 
2.2 Basic equations 

The set of basic equations based on a two-
fluid model [3], which is composed of the 
conservation laws of mass and momentum for gas 
and liquid phases, the equation of bubble oscillations 

(Keller equation [4]), the equation of state for both 
phases, and so on, is used. The other equations are 
not shown here for the economy of space (see the 
explicit form in our previous papers [2, 5]).  

 
2.3 Singular perturbation analysis 

All the dependent variables are expanded 
as power series of small but finite amplitude, 

 , as a nondimensional perturbation [6]. We 
consider an initial small polydispersity (i.e., 
nonuniformity). The bubble radius as dependent 
variable is then expanded as follows:  

 

 
 
 

(3) 
where  is the radius of a representative bubble,  

  is a known function representing the initial 
polydispersity; the subscript 0 denotes initial 
unperturbed state and the superscript * does 
dimensional quantity. Noting that the expansion of 
void fraction is immediately determined from Eq. (3). 

The expansions of the other dependent 
variables are the same as those in our previous study 
[2]. 
 

 

 
Fig. 1  Difference between length scale in KdVB 

case and that in NLS case.                                             
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2.4 Parameter scaling  
The size of set of three nondimensional 

ratios is determined as in our previous study [2]: 

 

 

 
 
 

(4) 
where  is a typical propagation speed of waves, 

 is the sound speed in pure water,  is a typical 
wavelength,  is an incident frequency of waves, 
and   is the eigenfrequency of single bubble 
oscillations.  

As shown in Eq. (4), in the case of KdVB 
equation, the typical propagation speed of waves is 
small compared with the sound speed in pure water, 
the typical wavelength is large compared with the 
initial bubble radius, and the incident frequency of 
waves is low compared with the eigenfrequency of 
waves. On the other hand, in the case of the NLS 
equation, the typical propagation speed of waves is 
considerably small compared with the sound speed 
in pure water, the typical wavelength is comparable 
with the initial bubble radius, and the incident 
frequency of waves is comparable with the 
eigenfrequency of waves.  

 
3. Result 
3.1 Case A: long wave and large polydispersity [7]  

For low frequency long wave, we have the 
following resultant equation from the second-order 
of approximation:  

 (5) 
via variables transform,  

, (6) 

 (7) 

where   is the constant coefficient 
and the same as those in the previous study [2] and 

 is the variable coefficient depending on . 
As is clear from Eq. (7), the small polydispersity then 
affects the advection of waves at the far field.  

 

3.2 Case B: short wave and small polydispersity  
 For high frequency short wave, we have 
the following equation from the third-order of 
approximation:   

 (8) 
via variables transform,  

, (9) 

 (10) 

where  is the complex amplitude of the envelope 
wave,   group velocity,   wavenumber of the 
envelope wave. Although   and   are the real 
constant coefficients [2],   is the variable 
coefficient depending on  As in Sec. 3.1, 
polydispersity contributes wave advection at the far 
field.  
 
3.3 Case C: short wave and large polydispersity  
 We here briefly introduce a further 
perspective. For the NLS case in Eq. (3), by 
beginning the expansion from  ,  
we can treat larger polydispersity than Sec. 3.2. The 
detail will be shown in presentation.  
 
4. Summary 

Pressure wave propagation in initially 
quiescent water uniformly containing many 
spherical microbubbles with an initial small 
polydispersity was theoretically studied and the 
resultant nonlinear wave equations were derived. 
The polydispersity contributes the wave advection at 
the far field.  
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Fig. 2  Conceptual diagram of the result in Sec. 
3.1: near field is initially monodisperse and far 

field is initially polydisperse.  
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