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1. Introduction 

Techniques to block waves in specific frequency 
ranges are in wide demand. For acoustic waves in 
periodic media, such frequency ranges are called 
phononic band gaps. Two main methods to produce 
such band gaps by static structures exist. One way is 
to use phononic crystals, i.e. acoustic periodic 
structures, and the other is to use acoustic 
metamaterials, i.e. structures with local vibrational 
resonances. To bring out the basic physics of such 
phenomena for instructive purposes, experiments on 
mechanical structures of human dimensions have 
been recently developed [1,2]. But in these systems 
the detailed mechanical motion is not immediately 
visually accessible. We are therefore developing 
mechanical wave-supporting structures based on the 
Shive wave machine, which we previously used for 
modeling phononic crystals [3]. Here, we present an 
upgraded wave machine, and demonstrate the 
creation of phononic band gaps not only in phononic 
crystals but also in acoustic metamaterials. 
 
2. Shive wave machine 

The Shive wave machine is suitable for 
demonstrating various wave phenomena because of 
the large vibrational amplitude, small wave velocity 
and the ability to observe wave propagation visually 
[4]. The structure consists of a periodic one-
dimensional array of torsionally-coupled rods 
suspended on wires. When a rod rotates, the tension 
of the wire generates a restoring force on the adjacent 
rods, so the Shive wave machine can exhibit wave 
phenomena such as reflection, transmission, and 
standing waves. 

The properties of the Shive wave machine as a 
wave-supporting medium are determined by the 
moment of inertia of each rod  and by the torsional 

constant   , where   is wire tension, 
 is the distance from the center of the rods to the 

two wires and  is the lattice constant (see Fig. 1). 
The equation of motion for the n-th rod is 

 , (1) 
where  is the torsion angle of the n-th rod. The 
system represents an analogy of a one-dimensional 
mass-spring model. The equation of the motion of 
the equivalent mass-spring system is 

 (2)  

where un is the displacement of the n-th mass point, 
 is the mass, and   is the spring constant. 

Comparing Eqs. (1) and (2), the moment of inertia  
and torsional constant  in the Shive wave machine 
correspond to the mass   and spring constant  
in an equivalent one-dimensional mass-spring model, 
respectively. 
 
3. Phononic band gap from spatial periodicity 

The phononic band gap arises from the spatial 
periodicity, as shown in Fig. 2 for the discrete 
mechanical mass-spring model. The calculation of 
the dispersion relation from this model is commonly 

 
 
Fig. 2 Schematic diagram of a periodic mass-spring 
model and its dispersion relation. Red solid lines are 
the phononic branches for real wavevector  , and 
purple dotted lines are in the phononic band gap for 
imaginary , implying spatial wave decay. 

 
 
Fig. 1 Correspondence between the wave machine and  
a one-dimensional mass-spring model. On rod rotation, 
the tension in the wires  generate restoring forces . 
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given in chapters on phonons in solid-state physics 
textbooks. Using a unit cell in the Shive wave 
machine with two different moments of inertia, it is 
therefore possible to mimic the behavior of phononic 
crystals [3].

4. Phononic band gap from local oscillators
The phenomenon of phononic band gaps arising 

from arrays of local oscillators, i.e. acoustic 
metamaterials, is shown for the discrete mechanical 
mass-spring model in Fig. 3. Each outer mass has an 
inner oscillator. Band gaps are created near the 
resonant frequency of the inner oscillator [5].

We mimic acoustic metamaterials with the Shive 
wave machine by attaching plastic blade springs, 
acting as local oscillators, with a resonant frequency 
of 3.5 Hz to both ends of each rod. Fig. 4 shows 
frames from a movie of the torsional wave 
propagation. Waves can propagate in the 
metamaterial part of the wave machine when the 
incident wave has a somewhat lower or higher 
frequency than the resonant frequency of the plastic 
blade, as shown in Fig. 4 (a) and (c), but cannot 
propagate at a frequency in the band gap, as shown 
as Fig. 4(b). In the band gap, waves only penetrate 
to a distance of one or two rods. 

4. Conclusion
We have demonstrated phononic band gaps 

arising from spatial periodicity and also from local 
oscillators using a Shive wave machine. This e 
represents an excellent mechanical platform not only 
for educational purposes but also for demonstrating 
new mechanisms to control wave motion, including 
active control. 
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Fig. 3 Schematic diagram of an elastic metamaterial 
based on a mass-spring model and its dispersion relation. 
Red solid lines are the phononic branch, and purple 
dotted lines are in the phononic band gap. The dotted blue 
curves indicate the phononic branches without inner 
masses, and the horizontal dotted blue line the resonant 
angular frequency of the inner mass ( ).
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Fig. 4 Frames for constant-frequency movies in which 
the wave propagates from a non-metamaterial zone 
(left) to a metamaterial zone (right) (a) below the band 
gap, at 1.5 Hz, (b) in the band gap at 3.5 Hz (i.e. near 
the resonance of the blade springs), and (c) above the 
band gap, at 5 Hz. The waves are generated with a 
motor and crank on the left-hand side. To form the 
acoustic metamaterial, blade springs are added at both 
ends of each rod.
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