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1. Introduction 

Dispersion effect of waves is one of the most 
important properties of pressure (or shock) wave 
propagation in bubbly liquids and does not appear 
for the case of single phase fluids. Although the wave 
frequency is independent of the wavelength in single 
phase fluids, the wave frequency is dependent on the 
wavelength in bubbly liquids. Figure 1 shows the 
conceptual diagram of linear dispersion relation in 
bubbly liquids shows that there exist two branches, 
i.e., Slow mode and Fast mode [1, 2]. Slow mode and 
Fast mode correspond to the phase velocity always 
lower and higher than the speed of sound in pure 
liquid, respectively.  

Fast mode appears only for the case that the 
compressibility of liquid phase is taken into account. 
Although Slow mode was found about 50 years ago 
and has a long history of theoretical studies, few 
studies have been carried out for Fast mode (e.g., [1, 
2]). Waves propagating at a speed close to the speed 
of sound in pure water ahead of shock waves were 
observed, but since the observed waves have small 
amplitude [3], it is implied that a theoretical 
prediction is significantly desired. Since its 
amplitude is small but finite, a weakly nonlinear 
analysis (i.e., neither linear nor strongly nonlinear 
analyses) [4] is appropriate for the prediction.  

The aim of this paper is a theoretical 
prediction of shock wave in Fast mode. Especially, 
we incorporate the thermal effect [5, 6], which was 
neglected in our preceding study [7]. As a result, we 
found that strong dissipation effect appears and an 
interaction between nonlinearity and thermophysical 
property.  

 
2. Problem statement 

Weakly nonlinear propagation of plane 
progressive pressure waves in an initially quiescent 
compressible water uniformly containing many 
spherical microbubbles is theoretically investigated 
and formulated as nonlinear wave equation. We 
summarize the main assumptions: (i) Incident wave 
frequency is quite higher than eigenfrequency of 
bubble oscillations; (ii) Wavelength is quite shorter 

than the bubble radius; (iii) Gas inside bubbles is 
only composed of non-condensable gas, and hence 
the phase change across gas-liquid interface does not 
occur; (iv) Viscosity for bubbly liquids is considered 
by using the initial void fraction and the viscous 
coefficient of liquid phase.  

 
3. Basic equations 

We newly introduce an energy equation 
incorporating a thermal conduction at the bubble-
liquid interface [5, 6]: 

 

 
 (1) 
 

where   is the time,   pressure,   bubble 
radius,  ratio of specific heats in the gas phase,  
thermal conductivity in gas,   temperature,  
thermal diffusivity in gas,   eigenfrequency of 
single bubble oscillations; the subscript G denotes 
volume-averaged variables in gas phases, subscript 0 
does the quantities in the initial uniform state at rest, 
and superscript * does a dimensional quantity. 

The Keller equation for bubble dynamics as 
spherical symmetric oscillations in a compressible 
liquid is used (shown only important terms): 
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Fig. 1 Linear dispersion relation of pressure 

waves in a compressible liquid containing many 
bubbles [1, 2]. 
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where   is the density,   surface-averaged 
liquid pressure at gas-liquid interface,   sound 
speed in pure water; the subscript L denotes volume-
averaged variables in liquid phases. Further, the 
conservation laws of mass, momentum, and number 
density of bubbles, Tait equation of state for liquid, 
equation of state for ideal gas inside bubble, 
conservation equation of mass inside bubble, and 
balance of normal stresses at the bubble-liquid 
interface are also used (see, the explicit forms in [4]). 

 
4. Results 

All the dependent variables are expanded in a 
power series, e.g., the expansion of R* is  
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where the perturbation   is a typical 
nondimensional (finite but small) amplitude. Further, 
we assume the solution of R1 into the following form: 
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where the envelope A is the complex amplitude 
depending on slow scales, k is the wavenumber,  
is nondimensional frequency, t is the nondimensional 
time and x is the nondimensional space coordinate.  
 
4.1 Near Field 

Leading order of approximation gives  
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That is, the envelope wave is regarded as a constant.  

4.2 Central Field 
Second order of approximation gives  
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where vg is the group velocity and Di is the real 
constant. That is, the envelope wave is almost 
constant along characteristics with respect to vg with 
a small effect of third- and fourth-terms in Eq. (6). 

4.3 Far Field 
Deriving third order of approximation and 

combining the near, center, and far fields give the 
following NLS (Non-Linear Schrödinger) type 
evolution equation [7] (Fig. 2): 
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with variables transform, 
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where   is the real constant depending on initial 
conditions and many parameters. Especially, 
focusing on the nonlinear and dissipation terms, we 
found the following points: (i) strong dissipation due 
to thermal conduction in dissipation coefficient is 
observed, and (ii) the interaction between wave 
nonlinearity and thermophysical property is clarified.  
 
5. Summary 

Weakly nonlinear propagation of shock waves 
in compressible water containing many 
microbubbles is theoretically investigated with a 
special focus on the thermal effects. As a result, 
thermal conduction strongly contributes the wave 
dissipation. Furthermore, the interaction between 
thermophysical property and wave nonlinearity is 
clarified. 
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Fig. 2  Conceptual illustration of division of 
sound field into three fields and asymptotic 
behaviors of carrier and envelope waves. 
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