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Enhancement of Leaky SAW Harmonics Excitation Using
Bonded Dissimilar Material Structures
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1. Introduction

To develop next-generation mobile
communication systems, high-performance surface
acoustic wave (SAW) devices with a high frequency,
a wide bandwidth, a large Q factor, and a small
temperature coefficient of frequency (TCF) are
required. As an approach to achieving
high-frequency operation, the utilization of
high-order SAW harmonics has been proposed. The
SAW excited by an interdigital transducer (IDT)
contains an odd-order harmonics component in
addition to the fundamental wave. Their excitation
intensity depends on the ratio of the electrode width
a to the pitch p (metallization ratio: a/p) of an IDT.
Dependence of the excitation of SAW harmonics on
the metallization ratio and electrode shape has been
reported so far.”

On the other hand, our research group reported
that, in a bonded structure comprising a LiNbO;
(LN) or LiTaOs (LT) thin plate with a thickness of
less than one wavelength and a quartz substrate, a
large electromechanical coupling factor (K?) and a
small TCF for leaky SAWs (LSAWs) and
longitudinal LSAWs (LLSAWSs) can be obtained
simultaneously.**

In this study, the LSAW third harmonic on
bonded dissimilar-material structures, such as
LT/quartz and LN/quartz, was investigated
theoretically and experimentally.

2. Theoretical Analysis

First, for the bonded structure of a 36°Y-cut
X-propagating LT (36°YX-LT) or 27°Y-cut
X-propagating LN (27°YX-LN) thin plate and
AT-cut 90°X-propagating quartz (AT90°X-quartz),
LSAW propagation properties were calculated as
functions of thin-plate thickness 4.® The calculated
values of K? of LSAW on LT/quartz with #/A=0.17
(A: wavelength) and LN/quartz with 4#/A=0.3 were
11.9 and 25.0%, respectively, and a low attenuation
of less than 10 dB/A for the metallized surface was
obtained simultaneously for both cases. By setting
the thin-plate thickness of LT or LN so that the
largest K* appears for the third harmonic, the
enhancement of the third-harmonic excitation can
be expected.

Next, by the finite element method (FEM), we
simulated the resonance properties of the LSAW
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Fig. 1. Simulated resonance properties of fundamental
LSAW and third harmonic.

third harmonic for LT/quartz and LN/quartz.
Assuming an infinitely periodic single-electrode
IDT with A=2.5 pm and a/p=0.8 as the simulation
model, the thin-plate thicknesses # of LT and LN
were set to 0.06A and 0.1, respectively, such that
the largest K was obtained at these thicknesses for
the third harmonic. The mechanical loss O, of
either LT or LN was disregarded.

As an example, Fig. 1 shows the simulated
resonance properties on 36°Y X-LT/AT90°X-quartz
and single LT. The responses of the LSAW third
harmonic were observed at around 4.8-4.9 GHz.
The fractional bandwidth for the third harmonic on
LT/quartz with A/A=0.06 and LN/quartz with
h/A=0.1 were 1.6% and 3.5%, respectively, which
were larger than that of the single LT or LN.

3. Experiments

Next, we conducted experiments using
36°YX-LT/AT0°X-quartz with A=1 um. Resonator
patterns with a period A of 20 pum (4#/A=0.05),
number of finger pairs N of 100.5 or 200.5,
reflector number Nz of 0 or 100, an aperture width
W of 25\ and a/p=0.4-0.8 were fabricated on the
LT surface using a 380-nm-thick Al thin film. For
comparison, a single 36°YX-LT sample was also
fabricated (a/p=0.4-0.85). Figure 2 shows the
measured resonance properties for N=100.5,
Nr=100, and a/p=0.8. For the third harmonics at
around 610-650 MHz, the fractional bandwidth,
admittance ratio, and resonance ( factor on
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LT/quartz increased to 1.4%, 63 dB, and 1,770 from
0.8%, 31 dB, and 480 for the single LT, respectively.
In addition, the admittance ratio and resonance Q
factor of the third harmonic on LT/quartz were
larger than those (51 dB and 1,440) of the
fundamental LSAW for the single LT at around 210
MHz. As a result of the experimental evaluation,
the admittance ratio and the fractional bandwidth of
the third harmonics on the LT/quartz were found to
increase with increasing a/p.

The TCF was determined by measuring the rate
of variability of the resonance and antiresonance
frequencies (f;, fa) of the fundamental LSAW and
the third and fifth harmonics when the hot plate on
which the sample placed was changed from room
temperature to 75°C. Figure 3 shows the measured
TCF together with the calculated TCF as functions
of h/MA for the free and metallized surfaces. For the
single LT (a/p=0.85), the TCF of the fundamental
LSAW and that of the third harmonic were
measured to be almost the same value. The A/A
dependence of the measured TCF for f, on
LT/quartz (a/p=0.8) was in good agreement with the
calculated value for the free surface. On the other
hand, the measured values of TCF for f; on
LT/quartz were worse than those of the calculated
value for the metallized surface, but the values were
better than those of single LT.

4. Conclusions

In this study, to obtain a high-performance
structure at higher frequency, the propagation and
resonance properties of LSAW harmonics on an
LT/quartz or LN/quartz structure were investigated
theoretically and experimentally.

The largest K? values were calculated to be
11.9% for 36°YX-LT/AT90°X-quartz with #/A=0.17
and 25.0% for 27°YX-LN/AT90°X-quartz with
h/A=0.3, and low attenuation of less than 10 dB/A
for the metallized surface was obtained
simultaneously for both cases. These properties
were better than those of the single LT or LN. By
setting the thin-plate thickness of LT or LN such
that the largest K appears for the third harmonic,
the enhancement of the third-harmonic excitation
can be expected. Using the FEM, the bonded
structure with the AT90°X-quartz support substrate
was found to be effective for enhancing the
third-harmonic excitation.

On the basis of these results, the LSAW
resonators for the third harmonic were fabricated on
36°YX-LT/AT0°X-quartz, and the resonance
properties and TCF of LSAW harmonics were
measured for the fundamental LSAW and the third
harmonic. For the bonded structure, the measured
fractional bandwidth, admittance ratio, and Q factor
increased to 1.4%, 63 dB, and 1,770 from 0.8%, 31
dB, and 480 for the single LT, respectively. The 4/A
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Fig. 2. Measured resonance properties of fundamental
LSAW and third harmonic.
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Fig. 3. Measured and calculated TCF of fundamental
LSAW, third, and fifth harmonics.

dependence of the measured TCF for f; on the
bonded structure (a/p=0.8) was in good agreement
with the calculated values. In the future, we will
investigate the proposed scheme to a LLSAW.
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