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1. Introduction 
The finite-difference time-domain (FDTD) method 
has simple schemes for approximating space and 
time derivatives of fields with discretized field 
values at grid points. For analysis of elastic waves 
propagating in solids by the FDTD method, we first 
choose the grids from standard staggered grids 
(SSG),1) Lebedev grids,2) rotated staggered grids,3) or 
staggered grids with the collocated grid points of 
velocities (SGCV).4, 5) The SGCV was developed for 
simple imposing of boundary conditions: free 
boundaries, symmetry condition, and asymmetry 
condition. Although FDTD analyses of isotropic and 
quartz Lamé resonators demonstrated the validity 
and usefulness of the SGCVs, the stability of SGCV 
models with free boundaries should be improved for 
long time simulation such as   time 
steps. 

In this paper, we presented two stable SGCV 
models of free boundaries in two dimensions. These 
models impose stress-free condition on the velocity 
fields in the SGCV half grids which are adjacent to 
the free boundary with bilinear polynomial 
interpolations. The stability and validity of the 
models were demonstrated by computing resonant 
frequencies of an isotropic Lamé resonator in the 
finite-difference frequency-domain (FDFD) 
method. 
 
2. Stable SGCV models of free boundaries 
Figure 1 shows three SGCV models of free 
boundaries in two dimensions . Here, 

and are position vectors of the 
grid points PT and Pi of stress components and 
velocity components, respectively.  In the SGCV 
grid with the second order accuracy in spatial 
approximation, a velocity vector  at a point 
with the position vector  can be 
expressed as follows:      

    
Here, the vector coefficients  can 
be determined from the values at the four vertices of 
the SGCV grid with a reference point ( , ).  
     We consider computation of the values 

 and  with the SGCV grids as 
shown in figure 1.  For computing the strain 
components  and ,  

the conventional SGCV model (CSGCVM) shown 
in figure 1 (a) uses the values of derivatives 

by differentiating (1) for the grid A 
with sides . Here, we do not use the stress-free 
boundary conditions,  and . In 
stable SGCV models of free boundaries, imposing 
the stress-free conditions on (1) for the half grid B 
being  in area shown in Fig. 1 (b) and (c), 
and substituting  in (1) with the values  
and , we can determine  from  
and , and compute  from (1) for 
SGCVMVF and  by differentiating 
(1) for SGCVMVD. Using (1) for the grid A, we 
have the value of  for SGCVMVF or 

 for SGCVMVD. Hence, we can determine 
required values as follows:  

 for SGCVMVF and 
 

for SGCVMVD. 
 
3. Stability analysis of FDTD models  
We used von Neumann stability analysis of FDTD 
models of a two-dimensional Lamé-mode resonator 
on an isotropic plate: applying central difference 
approximation with the second order accuracy to the 
spatial derivatives in Newton’s equation of motion 
and the strain-displacement relation with the elastic 
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     (b)                       (c) 
Fig. 1 SGCV models of free boundaries: (a) 
conventional SGCV model (CSGCVM), (b) 
stable SGCV model using a velocity in the free 
boundary (SGCVMVF), (c) stable SGCV 
model using velocity derivatives at the centers 
of adjacent half grids (SGCVMVD). 

2Pa1-2



constitutive equation, we have 

where is the Courant number, 
{ , , , , and are 
time, the normalized matrix of finite difference 
spatial operator, a time interval, and the velocity of 
the longitudinal bulk wave in the isotropic solid.
Here, the superscript and T denote the values at 
the time and transpose of the column 
vector, and and are two column 
vectors composed of the velocity and the stress 
components at all FDTD grid points, respectively.
Assuming that the elastic fields are time-harmonic 
fields with angular frequency , we have 

and we can derive an eigenvalue problem 
from (2) as follows:
    
where ( and are the eigenvalue and the 
eigenvector of the matrix .
     Next, using the second order approximation of
the time derivative in (2),

, we have a quadratic 
equation for :

. The solutions are

      .    (4)

If FDTD fields are stable.
     Hence, we conclude that all computed 
eigenvalues of the matrix in (3) should hold two
relations, and 
for stable FDTD analysis.

4. Numerical Results
We consider a two-dimensional Lamé-mode 
resonator with side length on an isotropic plate 
with Poisson’s ratio in vacuum. Figure 
2 shows distributions of computed eigenvalues of (3)
by the FDFD method run in the double precision 
arithmetic with . The largest absolute 
values of the real parts of the eigenvalues computed 
by FDFD method run in the double and quadruple 
precision arithmetic are shown in table 1. The 
absolute values of the real part of the eigenvalues 
computed by FDFD method using an SSG model 
with stress imaging technique (SSGMSI) and three 
SGCV models, CSGCVM, SGCVMVF and 
SGCVMVD, are less than , ,

, and , respectively. These 
values computed in the quadruple arithmetic are 
smaller than , that is approximately ten 
times the machine epsilon , except for
the values for the CSGCVM. In addition, using 
FDTD method run in the double precision arithmetic
with a vibration source as a sine-modulated Gaussian 
pulse and , we confirmed that time 

responses from to for the 
isotropic Lamé-mode resonator with SSGMSI and 
CSGCVM are stable and unstable, respectively. 
Hence, we can conclude that presented SGCV 
models, SGCVMVF and SGCVMVD, are stable. 
     Table 2 shows extracted parameters by fitting 
a function of to computed eigenvalues,

, from 
, , , , and . These values show 

that accuracy of SSGMSI is better than SGCV 
models.

Table 1 The largest value of the real parts of the 
eigenvalues. 

Model Double Quadruple
SSGMSI 2.9 3.9

CSGCVM 3.1 2.1
SGCVMVF 1.1 1.3
SGCVMVD 1.0 1.0

Table 2 Convergence parameters of the normalized
fundamental resonance frequency.

Model
SSGMSI -0.4109 1.9998

SGCVMVF 0.4803 1.8975
SGCVMVD -0.3473 1.9690
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Fig. 2 Eigenvalue distributions computed by FDFD 

method with (a) SSGMSI, (b) CSGCVM, (c) 
SGCVMVF, and (d) SGCVMVD. 
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