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1. Introduction 

Wireless and passive surface acoustic wave 
(SAW) sensors1 are expected to be used for 
continuous health monitoring of large structures such 
as bridges because of their small size and low cost 
and the ability to use impedance sensors without 
power supply. However, an evaluation method for 
the health monitoring has not been fully investigated. 
It is difficult to detect micro-defects even in the 
absence of disturbance. 

In this study, continuous wavelet transform 
(CWT) and machine learning2 are applied to evaluate 
vibration data of a cantilevere beam. Compared with 
our previous method1, frequency variation over time 
are obtained from CWT results. Also, the machine 
learning is adapted to distinguish damaged 
cantilevers.  
 
2. Measurement system 

In this study, 13.5 MHz SAW sensor was 
used. Interdigital transduces (IDT) and IDT type 
reflector were fabricated on 128YX-LiNbO3. A 
pressure sensor was connected to the IDT type 
reflector. The vibration of the cantilever beam made 
of polyethylene terephthalate (PET) resin was 
measured using the pressure sensor. Detail 
measurement method is written in ref. 1. 
 
3. Continuous wavelet transform (CWT) 

The CWT is a frequency analysis method, 
which represents an arbitrary waveform by scaling 
and translating a specific waveform called the 
mother wavelet. Unlike the Fourier transform, the 
CWT is suitable for aperiodic vibration analysis 
because it can retain the time information and has 
higher resolution than the short-time Fourier 
transform, which is also time-frequency analysis. 
Fig. 1 shows a typical CWT result obtained from the 
pressure sensor -loaded SAW sensor1. 

 In our previous studies1, the natural 
frequency from the FFT and the attenuation 
coefficient of damped vibration were used for 
evaluating the cantilever. For the CWT, the natural 
frequencies can be obtained as a function of time, as 
shown in Fig. 1. Moreover the attenuation 

coefficients at each frequency can be obtained. In 
addition, as shown in Fig. 1, a constant-amplitude 
disturbance occurs at around 20 Hz. It is considered 
to be an effective method in a real environment with 
a high noise level. 

 
4. Analysis of attenuation at each frequency  

Attenuation at each frequency obtained by the 
CWT was studied. We found that the attenuation at 
each frequency was classified into three categories: 
1) exponential damping is that the amplitude 
gradually attenuates from high value, 2) linear 
damping is rapid attenuation from low value, and 3) 
mixed damping includes the intermediate 
characteristics. We considered that the exponential 
damping occurs mainly around the natural frequency 
and the linear damping occurs in other regions. As 
the linear damping depends on the initial conditions 
of vibration generation, its amplitude and damping 
coefficient are highly variable. On the other hand, 
since the exponential damping depends on the 
properties of the material, the same results can be 
obtained for the same material and shape regardless 
of the initial conditions of vibration. Furthermore, 
since the proportion of the exponential damping 
increases with the expansion of the defect, it is 
considered that a more accurate defect detection is 
possible by focusing on the frequency of exponential 
attenuation obtained by the continuous wavelet 
transform and making use of these properties. 

 
5. Machine Learning Classification 

Defects in PET resin plates were detected 

 

 
 

Fig. 1  Typical CWT result. 
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using the machine learning with the attenuation 
coefficients for each frequency obtained by the CWT. 
An example of the dataset used is shown in Table 1. 
In the table, the values of 0 and 1 in the defect 
column mean absence and presence of defect, 
respectively. Attenuation coefficients at 8.97, 7.71, 
and 7.55 Hz obtained by the CWT show the feature 
values. Only the attenuation coefficients of the 
exponential damping were focused. The other 
feature values for the two types of the 
damping were set to zero. The attenuation 
coefficients for the exponential damping were 
used in the reciprocal number form, so that 
the decay was rapid and linear when it 
approaches zero, and becomes more gradual 
and exponential when it increases. In this 
study, 69 data were used. In those,  23 data 
were obtained from defect-free cantilever. The 
number of dimensionalities of the features is 
19. 

 
Table 1. Datasets used for machine learning 

Name Defect 
Attenuation coefficient 
8.97Hz 7.71Hz 7.55Hz 

Data1 0 0 0.858 0.906 
Data2 0 0 0.774 0.791 
Data3 1 0 1.766 1.74 

 
In the analysis, we used three types of machine 

learning models: support vector machine (SVM), 
random forest, and LightGBM (light gradient 
boosting machine). The SVM is a commonly used 
machine learning model. The LightGBM is an 
advanced form of the random forests, because it is a 
binary classification problem to discriminate 
whether there are defects or not and because the data 
for teachers can be used. Each hyperparameter is 
optimized through a prior grid search. 

Each model was evaluated by using cross-
validation, where the data set was randomly divided 
and the teacher's data and test data were swapped out 
for training and testing from three different 
perspectives: Accuracy(Acc), Log Loss, and Area 
Under Curve (AUC). The Acc represents the 
absolute number of correct answers. The Log Loss 
represents the deviation between predicted and 
actual values. The AUC is the number of correct 
answers considering the bias between classes 
calculated from the area under the ROC curve. In 
addition to the normal data set, we also performed 
the same evaluation on a data set where each data 
feature was normalized from 0 to 1. Tables 2 and 3 
show the evaluation results for each model in the 
normal data set and for the normalized data set, 
respectively. 

 
 

Table 2. Evaluation results for each model. 
Model Acc Log Loss AUC 
SVM 0.654 0.519 0.941 

Random Forest 0.654 0.546 0.729 
LightGBM 0.885 0.530 0.853 

 
Table 3. Evaluation results after normalization. 

Model Acc Log Loss AUC 
SVM 0.654 0.440 0.729 

Random Forest 0.692 0.445 0.856 
LightGBM 0.769 0.384 0.879 

 
From the tables, it is found that the accuracy of 

about 89% was obtained for the ACC using 
LightGBM, which was considered to be sufficiently 
accurate for practical use based on the log loss and 
AUC values. On the other hand, the accuracy of the 
SVM and Random Forest was below 70% for ACC. 
However, considering other indicators, further 
improvements can be expected by adjusting the 
hyperparameters and changing the measurement 
conditions. Although normalization contributes to 
the improvement in Log Loss, its impact on ACC is 
insignificant. Therefore, not only the value of the 
attenuation coefficient, but also the distribution of 
exponential/linear attenuation is considered to be an 
important factor for defect identification. We 
observed a frequency shift in the shape of the 
attenuation due to the expansion of the defect.  This 
means that the prediction of the regression of not 
only the presence or absence of the defect, but also 
its diameter and shape by increasing the number of 
data. 
 
6. Conclusion 

In this study, we found that the combinations of 
the impedance-loaded SAW sensor with the CWT 
and machine learning are an effective method for the 
health monitoring of the structure. In the future, we 
would like to study the implementation of regression 
prediction and defect detection under more realistic 
conditions. 
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