
Design and Implementation of High-order FDTD Method for Room
Acoustics

Tan Yiyu†, Toshiyuki Imamura, Masaaki Kondo

RIKEN Center for Computational Science
7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, Japan

1. Introduction

FDTD method has already become an essential
method in room acoustics because of its high
accuracy, easy implementation and parallelism. It is
computation-intensive and memory-intensive as the
problem size is increased because of the
oversampling in spatial grids to suppress the
inherent numerical dispersion. To date, many works
have already done at algorithmic level to reduce the
inherent dispersion and oversampling in FDTD
method [1-4]. However, these methods still require
high computation capability and memory
bandwidth.

On the other hand, GPUs and FPGAs were
applied to speed up computation in sound field
rendering in recent years because of their much
higher parallelism over traditional general-purpose
processors [5-7]. In particular, latest FPGAs contain
thousands of hardened floating-point arithmetic
units, several Megabytes of on-chip block
memories, and millions of reconfigurable logic
blocks. All these on-chip hardware resources may
be applied to directly implement sound wave
equation to accelerate computation in contrast with
software-based solutions in GPUs and
general-purpose processors. Therefore, FPGAs has
become promising in sound field rendering. In this
research, an FPGA-based accelerator is developed
to speed computation in sound field rendering with
the high-order FDTD scheme.

2. High-order FDTD Scheme

In the high-order FDTD scheme, high-order
approximation based on the Lagrange polynomial
fitting [8] can be employed to approximate the
second-order partial derivative instead of the
traditional second-order center difference method
in spatial domain in sound wave equation. In order
to reduce computation, the second-order center
difference method is applied on the time domain.
For example, in the 4th-order scheme, the
second-order partial derivative is approximated by

using equation (1) [2].
1 12

, , , , , ,
2 2

2 2, , 2, , 1, , 1, , , ,

2 2

2 , 2, , 2, , 1, , 1, , ,

2 2

2 , , 2

2

2

1 4 5() ()
12 3 2

1 4 5() ()
12 3 2

1 (
12

n n n
i j k i j k i j k

n n n n n
i j k i j k i j k i j k i j k

n n n n n
i j k i j k i j k i j k i j k

n
i j k i

P P PP
t t

P P P P PP
x x

P P P P PP
y y

P PP
z

, , 2 , , 1 , , 1 , ,

2

4 5) ()
3 2

n n n n
j k i j k i j k i j kP P P

z

 (1)

Letting x y z l and inserting equation
(1) into the sound wave equation as shown in
equation (2), equation (3) is derived to update
sound pressures for the fourth-order scheme [9].

2 2 2 2
2

2 2 2 2()P P P Pc
t x y z

 (2)

1 2
, , 2, , 2, , , 2, , 2,

, , 2 , , 2 1, , 1, , , 1,

2 1
, 1, , , 1 , , 1 , , , ,

1[(
12

4) (
3

15)] (2)
2

n n n n n
i j k i j k i j k i j k i j k

n n n n n
i j k i j k i j k i j k i j k

n n n n n
i j k i j k i j k i j k i j k

P P P P P

P P P P P

P P P P P

(3)

where c t l is the Courant number. The
updated equation of other higher order scheme can
be obtained by using the similar derivation
procedure, such as equation (4), which is the
updated equation of the 6th-order scheme [9].

1 2
, , 3, , 3, , , 3, , 3,

, , 3 , , 3 2, , 2, , , 2,

, 2, , , 2 , , 2 1, , 1, , , 1,

, 1, , , 1 ,

1[(
90

3) (
20

3) (
2

n n n n n
i j k i j k i j k i j k i j k

n n n n n
i j k i j k i j k i j k i j k

n n n n n n
i j k i j k i j k i j k i j k i j k

n n
i j k i j k i j

P P P P P

P P P P P

P P P P P P

P P P 2 1
, 1 , , , ,

49)] (2)
6

n n n
k i j k i j kP P

(4)

Equations (3) and (4) indicate that a grid and its
neighbor grids along axes are required to compute
its sound pressure.

3. System Design

Sound field rendering with FDTD methods is
 tan.yiyu@riken.jp

2Pb2-1

memory-intensive. To reduce the required memory
bandwidth, a large sound space with M × N × Nz
grids is firstly decomposed into small spatial blocks
and each block has Cx × Cy × Nz grids. A spatial
block is further partitioned into x-y planes along the
z dimension. Computations are performed on the
basis of planes inside a block while they are carried
out along the x dimension inside a plane. When a
spatial block is computed and results are stored in
on-chip block RAMs inside an FPGA, computation
for the same spatial block at next time steps is
performed without waiting for computations of all
grids are completed. Therefore, the external
memory accesses are reduced and computation at
several time steps is carried out in parallel.

The system diagram is illustrated in Fig. 1. The
system consists of the Data input module,
computation engine, and Data output module. The
Data input module streams data plane by plane of a
spatial block from the external DDR memory on the
FPGA card, and feeds data to the computation
engine. The computation engine consists of several
processing elements (PEs). Each PE computes
sound pressures of grids in a spatial block at a time
step, and several PEs are cascaded to compute
sound pressures of grids in the same spatial block at
continuous time steps. Therefore, accesses to
external memory are reduced and computation is
accelerated because sound pressures of grids in a
spatial block at several time-steps are computed
concurrently. As shown in Fig. 2, A PE computes
sound pressure of a grid according to its position,
incidence, and values of its neighbours at previous
time steps. The computed results are sent to the
neighbour PE except the final PE, in which they are
written to the external memory through the Data
output module.

4. Performance Estimation

The proposed FPGA-based accelerator was
designed using OpenCL and implemented using the
FPGA card DE10-Pro, which contained a Stratix 10
SX FPGA (1SX280HU2F50E1VG) and 8 GB
DRAMs. To verify and estimate its performance,
sound propagation in a three-dimensional shoebox
with dimension being 16m 8m 8m was analyzed.
The incidence was an impulse and the number of
the computed time steps was 32. As comparison,
the counterpart system was developed using C++,
and executed on a desktop machine with 512 GB
DRAMs and an Intel Xeon Gold 6212U 24-core
processor running at 2.4 GHz. The OpenCL codes
were compiled using the Intel FPGA SDK for
OpenCL 19.1 while the reference C++ codes were
compiled using the GNU compiler (version: 4.8.5)

with the option -O3 and -fopenmp to use all
processor cores.

The average rendering time at each time step is
presented in Table I. Compared with the software
simulation, the FPGA-based system accelerates
computations by 11, 13 and 18 times in
second-order, 4th-order, and 6th-order, respectively.

Fig. 1 System diagram

Fig. 2 Structure of a PE

Orders FPGA Software
2nd 0.04859375 0.536307
4th 0.03325 0.445838
6th 0.02384375 0.443655

Table I. Rendering time per time step (s)

Acknowledgment
This work was supported by the JSPS KAKENHI
Grant Number JP19K12092.

References
1. K. Kowalczyk and M. van Walstijn:

IEEE Trans. Audio Speech Lang. Process. 19
[1] (2011) 34-46.

2. J. Mourik and D. Murphy: IEEE/ACM
Trans. Audio Speech Lang. Process. 22 [12]
(2014) 2003-2011.

3. B. Hamilton and S. Bilbao: Proc. Int.
Conference on DAFx, 2013.

4. B. Hamilton and B. Stefan: IEEE/ACM
Trans. Audio Speech Lang. Process. 25 (2017)
2112-2124.

5. T. Yiyu, Y. Inoguchi, M. Otani, et al: Appl. Sci.
8 [35] (2018).

6. Y. Tan and T. Imamura: IEEE Cluster, 2020.
7. T. Ishii, T. Tsuchiya, and K. Okubo: Jpn. J.

Appl. Phys. 52 (2013) 07HC11.
8. P. Deuflhard and A. Hohmann: Numerical

Analysis in Modern Scientific Computing
(Springer-Verlag, New York, 2003) 2nd ed.

9. Y. Tan and T. Imamura: USE2019.

Proceedings of Symposium on Ultrasonic Electronics, Vol. 41 (2020)
25-27 November, 2020

