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1. Introduction 

FDTD method has already become an essential 
method in room acoustics because of its high 
accuracy, easy implementation and parallelism. It is 
computation-intensive and memory-intensive as the 
problem size is increased because of the 
oversampling in spatial grids to suppress the 
inherent numerical dispersion. To date, many works 
have already done at algorithmic level to reduce the 
inherent dispersion and oversampling in FDTD 
method [1-4]. However, these methods still require 
high computation capability and memory 
bandwidth. 

On the other hand, GPUs and FPGAs were 
applied to speed up computation in sound field 
rendering in recent years because of their much 
higher parallelism over traditional general-purpose 
processors [5-7]. In particular, latest FPGAs contain 
thousands of hardened floating-point arithmetic 
units, several Megabytes of on-chip block 
memories, and millions of reconfigurable logic 
blocks. All these on-chip hardware resources may 
be applied to directly implement sound wave 
equation to accelerate computation in contrast with 
software-based solutions in GPUs and 
general-purpose processors. Therefore, FPGAs has 
become promising in sound field rendering. In this 
research, an FPGA-based accelerator is developed 
to speed computation in sound field rendering with 
the high-order FDTD scheme. 

2. High-order FDTD Scheme 

In the high-order FDTD scheme, high-order 
approximation based on the Lagrange polynomial 
fitting [8] can be employed to approximate the 
second-order partial derivative instead of the 
traditional second-order center difference  method 
in spatial domain in sound wave equation. In order 
to reduce computation, the second-order center 
difference method is applied on the time domain. 
For example, in the 4th-order scheme, the 
second-order partial derivative is approximated by 

using equation (1) [2].  
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Letting x y z l  and inserting equation 
(1) into the sound wave equation as shown in 
equation (2), equation (3) is derived to update 
sound pressures for the fourth-order scheme [9].  
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where c t l is the Courant number. The 
updated equation of other higher order scheme can 
be obtained by using the similar derivation 
procedure, such as equation (4), which is the 
updated equation of the 6th-order scheme [9]. 
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Equations (3) and (4) indicate that a grid and its 
neighbor grids along axes are required to compute 
its sound pressure.   

3. System Design 
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memory-intensive. To reduce the required memory 
bandwidth, a large sound space with M × N × Nz
grids is firstly decomposed into small spatial blocks
and each block has Cx × Cy × Nz grids. A spatial
block is further partitioned into x-y planes along the 
z dimension. Computations are performed on the 
basis of planes inside a block while they are carried 
out along the x dimension inside a plane. When a 
spatial block is computed and results are stored in 
on-chip block RAMs inside an FPGA, computation 
for the same spatial block at next time steps is 
performed without waiting for computations of all 
grids are completed. Therefore, the external 
memory accesses are reduced and computation at 
several time steps is carried out in parallel.

The system diagram is illustrated in Fig. 1. The
system consists of the Data input module, 
computation engine, and Data output module. The 
Data input module streams data plane by plane of a
spatial block from the external DDR memory on the 
FPGA card, and feeds data to the computation 
engine. The computation engine consists of several 
processing elements (PEs). Each PE computes 
sound pressures of grids in a spatial block at a time
step, and several PEs are cascaded to compute 
sound pressures of grids in the same spatial block at 
continuous time steps. Therefore, accesses to 
external memory are reduced and computation is 
accelerated because sound pressures of grids in a
spatial block at several time-steps are computed 
concurrently. As shown in Fig. 2, A PE computes 
sound pressure of a grid according to its position, 
incidence, and values of its neighbours at previous 
time steps. The computed results are sent to the 
neighbour PE except the final PE, in which they are 
written to the external memory through the Data
output module.

4. Performance Estimation

The proposed FPGA-based accelerator was
designed using OpenCL and implemented using the 
FPGA card DE10-Pro, which contained a Stratix 10 
SX FPGA (1SX280HU2F50E1VG) and 8 GB 
DRAMs. To verify and estimate its performance,
sound propagation in a three-dimensional shoebox 
with dimension being 16m 8m 8m was analyzed.
The incidence was an impulse and the number of 
the computed time steps was 32. As comparison, 
the counterpart system was developed using C++,
and executed on a desktop machine with 512 GB 
DRAMs and an Intel Xeon Gold 6212U 24-core 
processor running at 2.4 GHz. The OpenCL codes
were compiled using the Intel FPGA SDK for
OpenCL 19.1 while the reference C++ codes were 
compiled using the GNU compiler (version: 4.8.5)

with the option -O3 and -fopenmp to use all 
processor cores.

The average rendering time at each time step is
presented in Table I. Compared with the software 
simulation, the FPGA-based system accelerates
computations by 11, 13 and 18 times in 
second-order, 4th-order, and 6th-order, respectively.

Fig. 1 System diagram

Fig. 2 Structure of a PE

Orders FPGA Software
2nd 0.04859375 0.536307
4th 0.03325 0.445838
6th 0.02384375 0.443655

Table I. Rendering time per time step (s)
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