# Theoretical study on the photothermal signal of the multilayer structure and application to the Sinanopillar/SiGe composite films

多層構造体の光熱変換信号理論の検討とSiナノピラー/SiGe複 合膜への適用

Yuki Arata<sup>1†</sup>, Tomoki Harada<sup>1</sup>, Daisuke Ohori<sup>2</sup>, Seiji Samukawa<sup>2</sup>, Tetsuo Ikari<sup>1</sup>, Atsuhiko Fukuyama<sup>1</sup> (<sup>1</sup>Univ. of Miyazaki; <sup>2</sup>Tohoku Univ.) 安良田裕基<sup>1†</sup>, 原田知季<sup>1</sup>, 大堀大介<sup>2</sup>, 寒川誠二<sup>2</sup>, 碇哲雄<sup>1</sup>, 福山敦彦<sup>1</sup>(<sup>1</sup>宮崎大,<sup>2</sup>東北大)

# 1. Introduction

Piezoelectric phptothermal (PPT) technique can detects the thermal and elastic waves generated by the nonradiative recombination of photoexcited carriers in the semiconductor. In our previous works, we discussed the decreasing the thermal conductivity  $(\kappa)$  in highly-periodic Si-nanopillars (NP) embedded in SiGe matrix (Si-NP/SiGe) fabricated by using biotemplate and neutral beam etching<sup>2</sup>). We had concluded that  $\kappa$  of Si-NP/SiGe composite film was significantly smaller than that of bulk Si<sup>3</sup>). However, the heat propagation whitin the LiNbO3 transducer and surrounded air had not been considered. If the heat escaped to the surrounded air, the past estimated value was not appropriate. Therefore, we developed our analysis by taking into account the heat propergating whitin the transducer and escaping to the outside.

### 2. Experimental method

The procedures of the sample preparation have already been reported<sup>3, 4)</sup>. The Si-NPs with diameter of 10 nm embedded in Si<sub>0.7</sub>Ge<sub>0.3</sub> were fabricated on Si-on-insulator substrate. The density of Si-NPs was  $1.6 \times 10^{11}$  cm<sup>-2</sup>. For PPT measurements, the probing light was illuminated on the Si substrate side and generated thermal and elastic waves caused by the non-radiative recombination were detected by LiNbO3 transducer that directly attached to the Si-NP/SiGe composite film side. Since the propagation of thermal and elastic waves were hindered by Si-NP/SiGe film before reaching the detector, the PPT signal intensity decreased. We have carried out the PPT measurements at room temperature by changing the chopping frequency of the probing light (f) from 40 to 3500 Hz. The wavelength of the probing light was fixed at 1120, 1090, 1060, and 1030 nm. The theoretical analysis based on the one-dimensional thermal propagation in multilayer structure was carried out.

Figure 1 shows a schematic model for present



Fig. 1 The schematic figure of theoretical model

theoretical calculations. The temperature within the *i*-th layer  $(T_i(x_i))$  is given by solving the one-dimensional heat diffusion equation<sup>5)</sup>,

$$T_{i}(x_{i}) = \exp(j\omega t)[B_{i}exp\{\mu_{i}(x - x_{i})\} + C_{i}exp\{-\mu_{i}(x - x_{i})\} + D_{i}exp\{-\alpha_{i}(x - x_{i})\}],$$
(1)

where j is the imaginary unit,  $\omega$  is the angular frequency, t is time.  $B_i$  and  $C_i$  indicate the amplitude of thermal waves in  $i^{\text{th}}$  layer propagation toward  $i - 1^{\text{th}}$  layer and  $i + 1^{\text{th}}$  layer, respectively.  $D_i$  is the temperature rise due to the light absorption in the  $i^{\text{th}}$  layer.  $\mu_i$  and  $\alpha_i$  are the thermal diffusion coefficient and the optical absorption coefficient in the  $i^{\text{th}}$  layer, respectively. By substituting eq. (1) into heat diffusion equation, following relations are obtained,

$$\mu_i = (1+j)/\lambda_i \tag{2}$$

$$\lambda_i = (2\kappa_i / \omega \rho_i c_i), \qquad (3)$$

$$D_i = -\alpha_i I_i / (\kappa_i (\alpha_i^2 - \mu_i^2)), \qquad (4)$$

where  $\lambda_i$  is the thermal diffusion length.  $\kappa_i$ ,  $\rho_i$  and  $c_i$  are the thermal conductivity, density and specific heat, respectively.

We supposed that the PPT signal intensity is proportional to the temperature at the interface between Si-NP/SiGe composite film and LiNbO<sub>3</sub>. Therefore, we calculated  $T_4(x_5)$  in the model

hk16002@student.miyazaki-u.ac.jp

shown in Fig.1. The 6<sup>th</sup> air layer was considered by taking into account the heat propergating whitin the transducer and escaping to the outside. The physical parameter of Air, Si, SiO<sub>2</sub> and LiNbO<sub>3</sub> were taken from literature<sup>6, 7)</sup>. In addition, we assumed that  $\alpha$  of Air, SiO<sub>2</sub> and LiNbO<sub>3</sub> were negligibly small. As a result, the fitting parameters were only  $\kappa_4$  and  $\alpha_4$  of Si-NP/SiGe composite film.

### 3. Result and discussion

Figure 2 shows the f -dependence of the experimental and theoretically calculated PPT signal intensities for two conditions at wavelength of 1090 nm. Experimental data were already reported in the previous papers<sup>3,4)</sup>. At low f region, the PPT signal intensity was decreased as f increased. This is because  $\lambda_i$  is proportional to a reciprocal square root of f. However, at high f region, a distinct dip was observed around 800 Hz. The calculated PPT signal intensities as a function of f using the present model are also shown. As shown in this figure, calculated PPT signal intensities well reproduced the experimental results. For considering the effect of 6<sup>th</sup> layer, we also calculated the PPT signal using the model without the 6<sup>th</sup> layer. No difference was observed for the calculated curves. This implies that the heat propergation whitin the transducer and escaping of heat outside are negligibly small.



Fig. 2 *f*-dependency of experimental and theoretically calculated PPT signal intensities

For detailed discussion, we separately calculated  $B_4$  and  $C_5$  at the interface  $x_5$  (between Si-NP/SiGe composite film and LiNbO<sub>3</sub>). In this case,  $B_5$  is the amplitude of thermal wave in LiNbO<sub>3</sub> towards Si-NP/SiGe and  $C_4$  is that in Si-NP/SiGe towards LiNbO<sub>3</sub>. They were estimated to be around 50 and  $2.5 \times 10^{-3}$ , respectively, for both models with and without the 6<sup>th</sup> air layer. These results implied that almost thermal waves in Si-NP/SiGe composite

film were reflected at the interface  $x_5$ . This may be caused by the low value of thermal conductivity of LiNbO<sub>3</sub> of  $\kappa_5 = 0.0353$  (W/cmK)<sup>6)</sup>. As a result, thermal wave in LiNbO<sub>3</sub> was extremely small and did not affected by the presence of the 6<sup>th</sup> air layer. However, for high-sensitivity detection of thermal wave in Si-NP/SiGe composite film, a transducer with relatively high value of  $\kappa_5$  is necessary.

#### 4. Conclusion

We have carried out the PPT measurements of Si-NP sample and theoretical analysis for multilayer structure based on one-dimensional heat diffusion equation. Calculated results well reproduced the experimental f -dependence of the PPT signal intensities. We also investigated the effect of heat propagation between the LiNbO<sub>3</sub> and rear-side air layer as well as at the interface of Si-NP/SiGe composite film and LiNbO<sub>3</sub>. In conclusion, since the thermal conductivity of LiNbO<sub>3</sub> was small, an effect of heat propagation within the LiNbO<sub>3</sub> and escaping to the rear-side air is found to be negligibly small.

### Acknowledgment

This research was supported by the Collaborative Research Project of the Institute of Fluid Science, Tohoku University.

# References

- A. Fukuyama, A. Memon, K. Sakai, Y. Akashi and T. Ikari J. Appl. Phys. 89 (2001) 1752
- A. Kikuchi, A. Yao, I. Mori, T. Ono, and S. Samukawa, J. Appl. Phys. **122** (2017), 165302.
- T. Harada, T. Aki, D. Ohori, S. Samukawa, T. Ikari, A. Fukuyama Jpn. J. Appl Phys. 59 (2020) SKKA08-4
- T. Harada, T. Aki, D. Ohori, S. Samukawa, T. Ikari and A. Fukuyama proceedings of Symposium on Ultrasonic Electronics 40 (2019) 25
- H. Nabeta, K. Yamanaka, Y. Nagata, T. Koda, Y. Kanemitsu, and Y. Masumoto proceedings of 11th Symposium on Ultrasonic Electronics 30 (1990) 289
- S. Horita, H. Konishi, N. Miyabo and T. Hata Jpn. Appl. Phys. 33 (1994) 3241
- S. M. Sze, *Physics of Semiconductor Devises*, 2nd ed. (1981), 852.