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Local changes in the shape and material of the 
elastic body can confine the vibration to that area. 
For example, the energy trapping of thickness 
vibration is used in a Quartz Crystal Microbalance 
(QCM) [1-6]. In a QCM, which is generally a 
circular quartz plate with gold electrodes at the 
center of both surfaces, the vibration energy is 
confined in a thicker electrode area. Because the 
resonance is not affected by the geometry and 
supports located away from the electrodes, it 
becomes very stable. Using this prominent 
characteristic, the QCM is used as a highly sensitive 
sensor for detecting small variations in mass caused 
by oxide growth, adhering viruses and proteins, 
polymers, and molecules.  

Such energy trapping has been observed not 
only in flat plates, but also in round bars and pipes. 
For example, Johnson et al. [7] presented energy 
trapping of a circumferential surface wave in a 
stepped region in a circular bar. Hayashi et al. [8-11] 
numerically and experimentally verified that 
circumferential propagation modes, which resonate 
in the circumferential direction of the pipe, cause 
energy trapping due to the change in pipe thickness. 

Considering the energy trapping in a pipe with 
a groove, the energy trapping area can be very thin 
in a pipe with a groove, we can expect to realize 
highly sensitive sensors. Moreover, electrodes are 
not required on the vibration surface, the response 
characteristics can be improved. However, Hayashi 
et al. [11] presented and discussed the theoretical and 
experimental results of out-of-plane vibrations, and 
little was said about the energy trap for the modes of 
in-plane vibrations. For example, considering the 
application of this phenomenon to biosensors, it is 
known that the Q-value of out-of-plane vibrations 
decreases due to leakage into the solution when the 
waves are directed out-of-plane, while the Q-value 
of SH waves does not decrease due to leakage into 
the fluid. 

In this study, the energy trapping of SH waves 
propagating in a pipe with a groove is investigated. 
 
2. Energy Trapping of SH Waves Predicted by 
Dispersion Curves 

Figure 1 shows the dispersion curves for 
aluminum alloy pipes with a longitudinal wave 
velocity   and a transverse wave 
velocity  in which the axial 
vibration is dominant and the guided wave mode is 
represented by the axial wavenumber. The figure 
shows only the modes with the circumferential order 

. n is the circumferential mode order, meaning 
that it has a circumferential distribution of . 
k is the wavenumber of the guided wave propagating 
in the longitudinal (z) direction. The vertical axis is 
frequency, and the horizontal axes on the right- are 
the real part of wavenumber , Re( ), and left-hand 
sides are the imaginary part of wavenumber , Im( ). 
We compare the dispersion curves of three pipes 
with different diameters and thicknesses in order to 
predict whether energy trapping occurs when a 
groove is placed on the outer surface or the inner 
surface of the pipe. The black line are the dispersion 
curves for a pipe with an outer diameter of 8 mm and 
a thickness of 0.4 mm, the blue line are the dispersion 
curves for a with an outer diameter of 7.8 mm and a 
pipe thickness of 0.3 mm, and the red line are the 
dispersion curves for a pipe with an outer diameter 
of 8 mm and a pipe thickness of 0.3 mm, where the 
solid line is the real part of wavenumber  and the 
dashed line is the imaginary part of wavenumber . 

in the longitudinal direction and has the distribution 
of  with the circumferential resonance. 

 
Fig.1 Dispersion curves for pipes of different  

diameters and thicknesses 
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In the case of a pipe with the diameter 8 mm 
and 0.4 mm thickness and a pipe with the diameter 8 
mm and 0.3 mm thickness, the cutoff frequency of 
the diameter 8 mm and 0.3 mm thick pipe is 620 kHz 
and the wavenumber of the diameter 8 mm and 0.4 
mm thick pipe at that frequency is purely imaginary, 
as . When a pipe groove is excited at the 
cutoff frequency, a standing wave with the 
distribution in the circumferential direction 
is formed without propagation in the longitudinal 
direction as  at the groove. At the same time, 
outside the groove, the longitudinal displacement 
decreases exponentially with a distribution of exp(-
200.2z), since  . This means that the 
energy is trapped in the pipe groove while resonating 
in the circumferential direction.

On the other hand, in the case of a pipe with the 
diameter of 8 mm and 0.4 mm thickness and a pipe 
with the diameter of 7.8 mm and 0.3 mm thickness, the 
cutoff frequency of the diameter of 7.8 mm and 0.3 mm 
thickness is 636.5 kHz, and the wavenumber of the 
diameter of 8 mm and 0.4 mm thick pipe at that 
frequency is  (real). This means that wave 
propagates toward the outside of the groove and 
there is no energy trapping in the pipe grooves.

3. Energy Trapping Mode of SH Waves 
Calculated by Semi-Analytical Finite Element 
Method

Because the above-mentioned analysis uses 
dispersion curves for a pipe of an infinite length, the 
energy trapping frequencies at a circumferential 
groove with a finite length cannot be predicted 
precisely. Therefore, the energy trapping frequencies 
are derived using a semi-analytical finite element 
(SAFE) calculation [12]. Figure 2 shows one of the 
resonant modes obtained as an eigenvalue in the 
SAFE, in which the vibration in the pipe axial 
direction are concentrated in a groove. The 
displacement in the axial direction of the pipe at a 
given moment is shown in color. These vibration 
appear as standing waves in the grooves, with the 
blue and red parts being the belly and the yellow-
green between them being the nodes. The calculated 
resonant frequency of 623 kHz is between the cutoff 
frequency of the diameter 8 mm and 0.4 mm 
thickness and the diameter 8 mm and 0.3 mm 
thickness, as predicted by the analysis of the 
dispersion curves in Figure 1. The fact that the 
energy trapping can be obtained even for SH wave 
vibration implies that this phenomenon offers 
promise for a wide variety of applications.

4. Summary
In this study, the energy trapping of 

circumferential SH waves in the pipe grooves is 

investigated. After predicting the energy trapping in 
the pipe groove using dispersion curves, the 
resonance frequencies and vibration modes were 
calculated numerically using the SAFE. The 
frequency is close to that expected by the dispersion 
curve. In addition, the energy trapping of even SH-
wave vibrations is expected to increase the 
sensitivity when applied to devices such as sensors.

The energy trapping modes will mainly 
contribute to improvement in the sensitivities and 
responsiveness of various sensors using vibrations, 
as in QCMs. In a QCM, the energy trapping occurs 
in the thick electrode area, which limits their 
sensitivity. On the contrary, the energy trapping area 
can be very thin in a pipe with a groove. The 
sensitivity of the sensor is expected to be improved 
by the increase in the adsorbed mass. Moreover, the 
in-plane modes can be generated and detected 
without contact and without electrodes by using 
electromagnetic acoustic transducers or laser 
ultrasonics, thereby resulting in sensors with 
extremely high sensitivities.

Fig.2 Energy trapping mode of SH wave
Color indicates the displacement in the pipe axial 

direction
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