Desorption of carbon dioxide from monoethanolamine solution by the addition of calcium chloride under ultrasound irradiation and characteristic evaluation of generated calcium carbonate

超音波と塩化カルシウムを用いた MEA 溶液からの CO₂脱離お

よび生成した CaCO3 の特性評価

Yuya Kitamura[†], Hirokazu Okawa, Takahiro Kato, and Katsuyasu Sugawara (Akita Univ.)

北村 優弥[†], 大川 浩一, 加藤 貴宏, 菅原 勝康 (秋田大院 理工)

(2)

1. Introduction

Exhaust gas from thermal power plant is a problem because CO_2 in the exhaust gas relates to global warming. Currently, carbon dioxide and storage (CCS) techniques are expected as a global warming measure. Monoethanolamine (MEA) has been used as an absorbent for removing CO_2 because MEA offers several advantages over other alkanolamines; high CO_2 absorption amount per unit weight and high CO_2 absorption rate [1]. However, desorption of CO_2 from the MEA solution requires a high temperature of 120°C. Chemical species of CO_2 in an aqueous solution chang to dissolved CO_2 gas ($CO_2(aq)$ and H_2CO_3), HCO_3^- and CO_3^{2-} by changing of the solution pH (Fig. 1 and Eq. (1)–(3)).

HCO₃⁻
$$\rightleftarrows$$
 CO₃²⁻ + H⁺
(Ka₁ = 4.7 × 10⁻¹¹, pKa₁ = 10.3) (1)

$$(Ka_1 = 4.7 \times 10^{-10}, pK_3)$$

 $H_2CO_3 \rightleftharpoons HCO_3^- + H^+$

$$(Ka_2 = 2.8 \times 10^{-7}, pKa_2 = 6.4)$$

CO₂(aq) + H₂O \rightleftharpoons H₂CO₃ (K = 1.7 × 10⁻³) (3)

Fujiwara et al reported that deaerating action of ultrasound is available for desorption of $CO_2(g)$ from CO₂(aq) in low concentration of MEA solution (0.2 M) at low temperature of 25°C [2]. However, ultrasound treatment cannot easily desorb $CO_2(g)$ at pH >8.2. It is because the main species of CO_2 at that pH value are HCO_3^- and CO_3^{2-} (Fig. 1). In previous study, we successfully increased desorption amount of CO₂(g) from the MEA solution of pH 8.2 by the increase of $CO_2(aq)$ concentration come from the decrease of pH from 8.2 using ultrasound (28 kHz) and calcium chloride $(CaCl_2)$ solution [3]. Compared with the desorption amount of CO₂(g) from the MEA solution using ultrasound without the addition of CaCl₂, the desorption amount treated by both using ultrasound and CaCl₂ showed higher value. We consider that the desorption amount of $CO_2(g)$ was increased by the shift in the equilibrium of CO₂ toward the

of the increase of $CO_2(aq)$ ($HCO_3^-+H^+\rightarrow H_2CO_3\rightarrow CO_2(aq)+H_2O$) owing to a decrease in pH with an increase in the H^+ concentration in the MEA solution by the synthesis reaction of calcium carbonate (CaCO₃) described by Eq. (4).

 $Ca^{2+} + HCO_3^{-} \rightarrow CaCO_3 + H^+$ (4)

The desorption amount of CO₂(g) using ultrasound and CaCl₂ was higher than that using stirring and CaCl₂. In addition, the CaCO₃ particles generated after the treatment for 10 min using ultrasound were smaller than using stirring. The particle size using ultrasound was $<3 \mu m$, on the other hand, the particles gained using stirring were mixture of small size of 3 µm and large size of 6 µm. The yield of CaCO₃ was about 90% in both cases of ultrasound and stirring. Therefore, we consider that ultrasound promotes the nuclear formation of CaCO₃ and it increases CO₂(g) desorption amount from MEA solution at the early stages compared with stirring. In this study, we investigated the desorption ratio of CO₂ and the changes of CaCO₃ yield by the elapsed time of ultrasound irradiation and stirring. Characteristic of generated CaCO₃ was evaluated.

Fig. 1 Relationship between chemical speciation of CO_2 and pH in solution at 25 °C.

2. Experiment

CO₂-absorbed MEA solution (MEA-CO₂) was prepared in a pressure vessel with 0.2 M MEA solution under the condition of 0.5 MPa CO₂ gas for 20 min with stirring at 750 rpm. Then, the MEA-CO₂ solution at pH 8.2 was prepared by stirring (800 rpm) after the standing for approximately 2 h under ambient pressure. The absorption amount (mM) of CO₂ in the MEA

okawa@mine.akita-u ac.jp (H. Okawa)

solution was determined from the change in the weight of the MEA solution before and after CO₂ absorption. The desorption of CO₂ from the MEA-CO₂ solution was performed by ultrasound irradiation using an ultrasound generator (Kaijo, TA-4021) and a submersible transducer (28 kHz) or by stirring (1500 rpm) using a magnetic stirrer. A submersible transducer was placed at the bottom of a water-filled tank, and the flat-bottom flask containing MEA-CO₂ solution (30 mL) was placed directly above the transducer. The CaCl₂ solution (30 mL, 5.2 mM) or ion-exchanged water (30 mL) was added to the MEA-CO₂ solution (30 mL, 110 mM CO₂). Then, ultrasound irradiation or stirring were performed for 1, 5, and 10 min. The solution temperature during irradiation maintained at 25°C. The desorption ratio (%) of CO_2 gas was determined from the weight loss of the mixed solution (60 mL) after the desorption experiment. The yield of CaCO₃(%) was calculated from the recovered amount (mM) of CaCO3 and the added amount (mM) of Ca²⁺. The size of generated CaCO₃ particles was investigated using scanning electron microscopy (SEM; Hitachi TM-1000).

3. Results and discussion

First, ion-exchanged water without CaCl₂ was added into the MEA-CO₂ solution followed by stirring or ultrasound irradiation for 10 min. The desorption ratio of $CO_2(g)$ using stirring for 1, 5 and 10 min was 1.0, 1.2 and 1.2%, respectively (Fig. 2). And, the desorption ratio of $CO_2(g)$ using ultrasound for 1, 5 and 10 min was 1.8, 1.9 and 2.2%, respectively. The value of desorption ratio of $CO_2(g)$ using ultrasound for 1 min was almost twice than that using stirring. The desorption ratio of CO₂(g) using ultrasound and stirring did not change anymore after the treatment time of 1 min. Next, CaCl₂ solution was added into the MEA-CO₂ solution followed by stirring or ultrasound irradiation for 10 min. The desorption ratio of $CO_2(g)$ using stirring for 1, 5, and 10 min was 5.3, 7.0, and 7.2%, respectively. And the desorption ratio of $CO_2(g)$ using ultrasound for 1, 5, and 10 min was 8.3, 9.3 and 9.8%, respectively. The desorption ratio of $CO_2(g)$ using ultrasound for 1 min was higher than that using stirring. Compared to the $CO_2(g)$ desorption ratio without the $CaCl_2$ addition, the desorption ratio increased approximately 6.5% at ultrasound condition and approximately 4.3% at stirring condition. Besides, the change of CO₂ desorption ratio from 1 min to 10 min was 1.8% ($5.3\% \rightarrow 7.2\%$) at stirring condition and 1.5% (8.3% \rightarrow 9.8%) at ultrasound irradiation condition. The yield of CaCO₃, 89%, using

ultrasound for 1 min was higher than that of 78% using stirring for 1 min. The yield of CaCO₃ at 10 min, ultrasound and stirring were 93% and 89%, respectively (Fig. 3). CaCO₃ particles synthesized using stirring for 1 min was observed by SEM, and the primary particles of 2-4 µm aggregated and formed secondary particles. When ultrasound used for CaCO₃ particles generation for 1 min, the almost primary particles were ≤ 1 um. Normally, the lower ultrasound frequency such as 28 kHz has a stronger physical effect [4]. Hence, we consider that CaCO₃ particles were rapidly generated by the mixing of MEA and CaCl₂ solution using ultrasound. And H⁺ concentration increased rapidly, that enhances the shifts of the CO₂ equilibrium in the direction of the CO₂(aq) increase. We can conclude that the ultrasound can desorb the CO_2 gas from the MEA solution more efficiently than stirring and the application of ultrasound makes possible to desorb CO₂ quickly.

Fig. 2 Desorption ratio of CO_2 from MEA solution at pH 8.2 using ultrasound and stirring with and without the CaCl₂ addition.

Fig. 3 Changes of $CaCO_3$ yield by elapsed time under two conditions; ultrasound+ $CaCl_2$ and stirring + $CaCl_2$.

References

- [1] K. Goto et al.: Int. J. Greenhouse Gas Contr., 5 (2011) 1214.
- [2] T. Fujiwara and H. Okawa et al.: J. of MMIJ, 135(1) (2019) 1.
- [3] Y. Kitamura and H. Okawa et al.: Jpn. J. Appl. Phys. 59 (2020) SKKD08.
- [4] T. Nakamura and H. Okawa et al., Jpn. J. Appl. Phys. **49**, 07HE11 (2010).