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1. Introduction 

In recent years, an application of ultrasound in 
the medical field such as therapy and diagnosis has 
been developed. The use of microbubble is 
drastically improved and enhanced a resolution of 
the image and an efficiency of therapy. DDS (drug 
delivery system) [1] and UCA (ultrasound contrast 
agent) [2] are the famous and expected examples for 
application. From the physical viewpoint, the precise 
understanding of the interaction between ultrasound 
propagation and microbubble oscillations has then 
been desired. 

The microbubble used in such applications is 
usually covered by a lipid shell, membrane, and so 
on. Church [3] and Hoff et al. [4]. established the 
theory of oscillations of an encapsulated bubble (i.e., 
bubble covered by an elastic shell) and derived the 
equation of motion for radial oscillations. However, 
these theories were restricted to the single bubble or 
some bubbles. In this paper, we theoretically studied 
nonlinear propagation of ultrasound in liquids 
containing many encapsulated microbubbles to 
extend the previous theory for a single bubble [3, 4] 
into that for a number of bubbles. Based on the 
singular perturbation method and Hoff's model [4], 
we succeeded the derivation of an effective wave 
equation for ultrasound propagation in liquids 
containing many encapsulated bubbles. 
 
2. Formulation of the problem 

Let us consider the weakly nonlinear (i.e., 
finite but small amplitude) propagation of plane 
progressive pressure (or ultrasonic) waves radiated 
from a sound source placed at the bubbly liquid. 

At an initially quiescent state, all the 
dependent variables including the bubble radius and 
the void fraction are uniform. To focus on the effect 
of shell of encapsulated bubble, we impose some 
assumptions: the bubbles do not coalesce, break up, 
appear, and disappear. The bubbles are spherical, and 
these oscillations are spherically symmetric. In 

addition, the liquid compressibility, the viscosity of 
gas inside the bubbles and the thermal conductivities 
of both phases are neglected. These assumptions are 
almost the same as those in our previous studies [5, 
6]. In this paper, the Church [3] or Hoff model [4], 
i.e., bubble dynamics as oscillations of encapsulated 
bubble, is installed for the equation of motion, 
instead of the Rayleigh-Plesset (or Keller-Miksis) 
model. We than can investigate theoretically the 
effect of viscosity and rigidity of the encapsulated 
shell on wave propagation. 
 
3. Basic equations for bubbly flows  

The set of basic equations based on a two-fluid 
model [5] is used. Firstly, the conservation of mass 
and momentum for gas and liquid phases are  

 

 

 

 
where  is the time,  space coordinate normal 

 

 
 

Fig. 1 Conceptual illustration of an 
encapsulated bubble. 
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to the wave front,  void fraction , *  
density,  * fluid velocity,   pressure, and  
interfacial momentum transport; the subscripts G 
and L denote volume-averaged variables in the gas 
and liquid phases, respectively. In addition to the 
volume-averaged pressure   and  , the liquid 
pressure averaged on the bubble-liquid interface,  

, is introduced.
We utilized Church-Hoff model [5, 6] (not 

Rayleigh-Plesset equation) as the equation of motion 
of the bubble dynamics to clarify the effect of 
viscosity and rigidity of the shell:

where  is the bubble radius,  shear modulus, 
  shear viscosity,   initial gas pressure,  

driving pressure of liquid,  liquid viscosity,  
initial shell thickness,   ratio of specific heats of 
gas, and  initial bubble radius.

4. Nondimensionalization
Independent variables are nondimensionalized

where   and   are a typical period and 
wavelength of the wave concerned, respectively. 

Furthermore, we nondimensionalized some 
parameters and evaluate the size of the 
nondimensionalized ratios:

where  ,  ,  ,  , and   are 
nondimensional parameter of  , and   is a 
nondimensional wave amplitude which is 
sufficiently small compared with unity .

All the dependent variables are 
nondimensionalized and expanded in power series of 
, for example, the bubble radius  is expanded as

5. Result 
Equating the coefficients of like powers of  

in the resultant equations, we have the following set 
of linearized equations as the first-order equations:

Eliminating  ,  ,  , and   from Eqs. 
(13)-(17), we can derive the linear wave equation for 
first-order perturbation of bubble radius, :

Hence, the effect of viscosity and rigidity of the shell 
do not affect and second-order of approximation is 
required. 

6. Summary
The propagation of pressure waves in a 

liquid containing many microbubbles encapsulated 
by the viscoelastic shell is theoretically investigated. 
The linear wave equation from first-order 
approximation is derived and the effect of the shell 
does not appear. From second-order approximation 
as nonlinear propagation, shell viscosity and shell 
rigidity affect wave propagation.
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