Utilization of tertiary amine solutions and ultrasound irradiation for CO₂ desorption at low temperature in a process of CCS

CCS における二酸化炭素の低温脱離を目的とした第三級アミン溶液と超音波照射の利用

Hirokazu Okawa[†], Hiroyasu Ito, Tatsuo Fujiwara, Yuya Kitamura, Takahiro Kato, and Katsuyasu Sugawara (Akita Univ.)

大川 浩一, 伊藤 寬泰, 藤原 達央, 北村 優弥, 加藤 貴宏, 菅原 勝康 (秋田大院 理工)

1. Introduction

CCS(carbon dioxide capture and storage) is a technology of recovering carbon dioxide (CO₂) from exhaust gas of fired power plant and storing it in underground. Monoethanolamine (MEA) is mainly used as a chemical absorbent in CCS technology. MEA has several advantages compared to other alkanolamines such as high CO₂ absorption amount per unit weight and high CO₂ absorption rate [1]. MEA reacts with CO₂ and carbamate ion (RNHCOO⁻) is generated according to Eq. (1). And HCO₃⁻ is also generated according to Eq. (2).

$$2\text{RNH}_{2} + \text{CO}_{2} \rightarrow \text{RNH}_{3}^{+} + \text{RNHCOO}^{-}$$
(1)
$$\text{RNH}_{2} + \text{CO}_{2} + \text{H}_{2}\text{O} \rightarrow \text{RNH}_{3}^{+} + \text{HCO}_{3}^{-}$$
(2)

 $(R: C_2H_5O, RNH_2: MEA)$

After the CO_2 absorption from exhaust gas using MEA, CO_2 is recoverd from the MEA solution as pure CO_2 gas which is stored in undergraoud.

However, the drawback of MEA utilization is high cost because desorption of CO_2 from MEA solution (4.9M) requires high temperature of >110°C [2]. Therefore, it is necessary to find out new method to desorb CO_2 from amine solution at low temperature.

We have been focussed on ultrasound to desorb CO_2 from CO_2 adsorbed MEA solution at low temperatue. We clalified that deaerating action of ultrasound is available for desorption of $CO_2(g)$ from $CO_2(aq)$ in low concentration, 0.2M, of MEA solution at 25°C [3]. We also clalified that CO_2 desorption by ultrasound works at pH <8.2 because only $CO_2(aq)$, the main species of CO_2 at these pH vaues, can be desorbed by ultrasound (**Fig. 1**).

In this study, we tried to use tertiary amine solution instead of primary amine, MEA, in the pesence of ultrasound. Normally, tertiary amine solution is lower CO_2 absorption rate than MEA solution. However, CO_2 absorption capacity, CO_2 mole per one mole of amine, of tertiary amine is higher than that of primary amine. CO_2 absorption reaction using tertiary amine solution is shown as Eq. (3).

 $R^{1}R^{2}R^{3}N + CO_{2} + H_{2}O \rightarrow R^{1}R^{2}R^{3}NH^{+} + HCO_{3}^{-}(3)$ Ultrasound can desorb $CO_2(aq)$ as $CO_2(g)$ from amine solution. However, directry desorption of CO_2 from CO_3^{2-} , HCO_3^{-} , and $RNHCOO^{-}$ is difficult for ultrasound. We consider that $CO_2(g)$ can be desorbed continuously by the shift in the equilibrium of CO₂ toward the CO₂(aq) (HCO₃⁻ + $H^+ \rightarrow H_2CO_3 \rightarrow CO_2(aq) + H_2O)$. Therefore, we consider that dissociation constant (pKa) of tertiary amine solution regulates CO₂(g) desorption amount by ultrasound irradiation. Thus, we investigated the influence of pKa of tertiary amine on CO2 desorption using ultrasound irradiation at low temperature. In this study, we used two tertiary amine solutions, triethanolamine (TEA) and N-Methyldiethanolamine (MDEA), which are different value of pKa, 7.85 (TEA) and 8.65 (MDEA) [4].

2. Experiment

CO₂-absorbed TEA solution (TEA-CO₂) and CO₂-absorbed MDEA solution (MDEA-CO₂) were prepared in a pressure vessel with 5.0 M tertiary amine solution (TEA or MDEA) under the condition of 0.5 MPa CO₂ gas for 12 h with stirring at 750 rpm. The absorption amount of CO_2 in the amine solution was determined from the change in the weight of the amine solution before and after CO_2 absorption. The desorption of CO_2 from the CO₂ absorbed amine solution was performed by ultrasound irradiation using an ultrasound generator (Kaijo, TA-4021) and a submersible transducer (28 kHz). A submersible transducer was placed at the bottom of a water-filled tank, and the flat-bottom flask containing TEA-CO₂ solution or MDEA-CO₂ solution (100 mL) was placed directly above the transducer. These solutions were irradiated by ultrasound for 15min at 20-25°C. The reached power from transducer to te solution in the flask was 12W by calorimetrically method. The

okawa@mine.akita-u ac.jp

desorption ratio (%) of CO_2 gas was determined from the weight loss of the solution after the desorption experiment.

3. Results and discussion

Fig.2 shows CO₂ absorption amount of TEA and MDEA solution and the value was 154 g/L and 207 g/L, respectively. MDEA, which is heigher pKa value, showed higher CO₂ absorption amount than TEA. Fig.3 shows changes of CO₂ desorption amount by irradiation time of ultrasound. CO₂ desorption amount from TEA and MDEA solution was 71g/L and 36g/L, respectively. TEA, which is lower pKa value, shows lower CO₂ absorption amount. CO₂ desorption ratio was caluculated by following formula.

CO₂ desorption ratio (%) = (CO₂ desorption amount / CO₂ absorption amount) \times 100.

CO₂ desorption ratio of TEA and MDEA is 46% and 17%, respectively. TEA can desorb almost half amount of CO₂ absorbed. From this result, the ultrasound can desorb CO2 gas from TEA solution more efficiently than from MDEA solution. The difference of CO₂ desorption amount of TEA and MDEA solution may come from the difference of pH value of each solution. Fig.4 shows changes of pH value of each solution at CO₂ desorption process using ultrasound irradiation for 15 min. Before the ultrasound irradiation (0 min), TEA, which is lower pKa value, shows lower pH value than MDEA. The lower pH increases molar ratio of $CO_2(aq)$ (Fig.1). Ultrasound can desorb $CO_2(aq)$ as $CO_2(g)$ from amine solution. Therefore, CO₂ desorption amount increased even at loe temperature using lower pKa tertiary amine solution and ultrasound irradiation.

Conclusion

The tertiary amine solution, which has lower pKa value, is more effective on CO_2 desorption combined with ultrasound irradiation. TEA shows high CO_2 desorption ratio of 46% for 15 min irradiation even at low temperature.

References

- K. Goto et al.: Int. J. Greenhouse Gas Contr., 5 (2011) 1214.
- [2] W. J. Choi et al.: J. Environ. Sci., 21 (2009) 907.
- [3] T. Fujiwara and H. Okawa et al.: J. of MMIJ, 135(1) (2019) 1.
- [4] F. A. Chowdhury et al.: Ind. & Eng. Chem. Res., 52 (2013) 8323.

Fig.4 Changes in the pH value of each tertiary amine at CO₂ desorption process (5.0 M, 100 ml, 20-25°C).