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1. Introduction
Finite-difference time-domain (FDTD) method 

[1] is a most popular numerical method for non-
stationary sound field analysis, since it has a simple
algorithm that is easy to program. This article is a
tutorial for analyzing sound wave propagation by the
FDTD method. In particular, the CE-FDTD method
[2-5] which is a higher accuracy version of FDTD
method is mainly described.

2. Theory
2.1 Governing equations

For analysis of linear sound wave propagation 
without absorption, the following continuity 
equation and equation of motion are used. 
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where 𝑝 is sound pressure, 𝒖 = (𝑢, 𝑣) is particle 
velocity vector, 𝜌  is density, and 𝑐$  is sound 
speed. On the other hand, the wave equation can be 
also used as follows. 
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So, which governing equation should be used for the 
sound field analysis? It depends on the problem to be 
solved. For most sound field analysis, the sound 
pressure is only required, so the wave equation (3) is 
sufficient. Eqs. (1) and (2) are used only when it is 
necessary to keep the particle velocity in the whole 
region as in the analysis of sound intensity 
distribution.  

2.2 Discretization by FDTD method 
First, we consider the discretization of eqs. (1) 

and (2) by the FDTD method in two-dimension. 
Since these equations are expressed by the first 
derivative in both time and space, the difference 
interval becomes 2∆ in space or 2∆𝑡 in time using 
the central difference on the collocated grid as shown 
in Fig. 1 (a). In this case, the numerical accuracy is 
degraded, so the staggered grid as shown in Fig. (b) 
is generally used. Discretizing eqs. (1) and (2) on the 
staggered grid gives the following equations. 
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where 𝑝!,#$  represents sound pressure on the grid 
(𝑥, 𝑦) = (𝑖Δ, 𝑗Δ)  at time 𝑡 = 𝑛Δ𝑡 , (𝑢2, 𝑣2) = 𝜌𝑐0(𝑢, 𝑣) , 
and 𝜒 = 𝑐)Δ𝑡/Δ  is Courant number. The difference 
intervals can be kept at ∆ and ∆𝑡 respectively by using 
the staggered grid, and the decrease in accuracy can be 
avoided. This discretization will be called the vector-type 
FDTD (vFDTD) method. 

For the wave equation (3) another discretization 
can be given on the collocated grid as 
𝑝!,#$%& = 2𝑝!,#$ − 𝑝!,#$'& + 𝜒*,𝛿+* + 𝛿,*-𝑝!,#$  (7) 
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This discretization will be called the scalar-type FDTD 
method (sFDTD). So which discretization is better for 
sound field analysis? We first consider the numerical 
accuracy. Eq. (7) can be obtained eliminating the 
particle velocity from eq. (4) using eqs. (5) and (6). 
So, it is found that both discretizations have the same 
accuracy. In vFDTD method, the particle velocity 
acts only as an intermediate variable in the program. 

Next, we consider the memory usage required 
for analysis as shown in Table 1. vFDTD requires 
memory of N for sound pressure and number of 
dimensions×N for particle velocity, where N is 
number of grid points, while sFDTD requires 2N for 
the sound pressure 𝑝*  and 𝑝*+'  regardless of 
dimension (𝑝*,' should be overwritten on 𝑝*+'). 
The memory amount is proportional to the 
calculation time since most of the calculation time 

Table 1 Memory usage required for analysis 
     (N is number of grid points). 
dimension vFDTD sFDTD 

1 2N 2N 
2 3N 2N 
3 4N 2N 

Fig.1 Two-dimensional FDTD grids. 
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depends on data transfer. So, it is found that sFDTD 
has advantage for sound field analysis. 
2.3 Compact explicit (CE)-FDTD method [2-5] 

In the standard FDTD method (SLF), the 
second-order difference is evaluated by the points in 
the axial direction as shown in Fig.2 (a). It is also 
possible to evaluate in the diagonal direction as 
shown in Fig.2 (b), which is called rotated leapfrog 
(RFL). The discretization form is given by 
 𝑝!,#$%& = 2𝑝!,#$ − 𝑝!,#$'& + 𝜒*𝛿+*𝛿,*𝑝!,#$   (9) 
The compact explicit-FDTD method is derived by 
combining SLF and RFL as  
 𝑝!,#$%& = 2𝑝!,#$ − 𝑝!,#$'& + 𝜒*,𝛿+* + 𝛿,* + 𝑎𝛿+*𝛿,*-𝑝!,#$  (10) 
where a is a parameter to control accuracy. The 
greatest advantage of CE-FDTD is that the accuracy 
can be improved by increasing the number of 
evaluation points without memory increasing.  

The three-dimensional form is given by 
𝑝!,#,-$%& = 2𝑝!,#,-$ − 𝑝!,#$'& + 𝜒*,𝛿+* + 𝛿,* + 𝛿.* + 𝑎(𝛿+*𝛿,* +
𝛿,*𝛿.* + 𝛿.*𝛿.*) + 𝑏𝛿+*𝛿,*𝛿.*-𝑝!,#,-$   (11) 
where a and b are independent parameters that 
control the accuracy, and various derivative methods 
are proposed as shown in Table 2, where 𝜒/ is the 
upper limit of CFL, and fc is the cutoff frequency 
normalized by the sampling frequency. In the case of 
a=1/4, b=16, the scheme is called the interpolated 
wide band (IWB) which has an ideal characteristic 
that the cutoff frequency agrees with the Nyquist 
frequency. 

Fig.3 shows the memory usage and the 
calculation time with GPU calculation for various 
derivative scheme when achieving the same 
bandwidth. In the figure, the values are normalized 

by SLF. It is found that the memory usage of IWB is 
smallest and is about 30% of that of SLF. It is also 
confirmed that the calculation time of IWB is 
shortest and is about 14% of that of SLF. This is 
because that the cutoff frequency of IWB is higher 
than that of SLF, so the sampling frequency of IWB 
can be set lower if the bandwidth is the same. 
 
3. Numerical demonstrations  

Fig. 4 shows the spectrograms of impulse 
response calculated by SLF and IWB schemes. The 
ringing caused by the numerical dispersion is 
observed in each scheme. Some obvious peaks are 
also observed in the spectrogram, corresponding to 
the cutoff frequency. It is experimentally found that 
the IWB scheme has the widest bandwidth. Fig.5 
shows the reverberation curve of the Yamaha Hall. 
The reverberation curve agrees well with the 
measured one. 
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Table 2 Numerical parameters for derivative schemes  
      in the 3-D CE-FDTD method. 

scheme a b 𝜒/ fc 
SLF 0 0 1/√3 0.196 
CCP 1/4 0 1 0.333 

OCTA 1/2 1/4 1 0.25 
IWB 1/4 1/16 1 0.5 

 

Fig.2 Grid point reference for the second-order difference. 
Fig.3 Computational performance with GPU calculation. 

Fig.4 Spectrogram of impulse response calculated by SLF and IWB. 

Fig.5 Yamaha Hall model and its reverberation curve calculated. 
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