## Enhancement of coupling factor $K^2$ in higher-mode RSAW on polarity inverted ScAIN films/high velocity AIN or BN substrates

分極反転 ScAIN 薄膜/高音速 AIN, BN 基板上を伝搬する 高次モード RSAW の結合係数 K<sup>2</sup> 増幅

Yusei Takano<sup>‡</sup>, Masashi Suzuki, and Shoji Kakio (Univ. of Yamanashi) 高野佑成<sup>‡</sup>, 鈴木雅視, 垣尾省司 (山梨大)

### 1. Introduction

To develop next generation communication systems, high-performance surface acoustic wave (SAW) devices with a high frequency, a high electromechanical coupling factor ( $K^2$ ), and a high Q factor are required. A SAW resonator with aluminum nitride (AIN) film/high phase velocity substrate structure can operate above 2 GHz and has a high Q factor. However, it is not appropriate for wideband filters because the low  $K^2$  of approximately 1.2% in 1st mode Rayleigh SAW (RSAW) on AIN film/diamond substrate<sup>1</sup>).

Recently, it was reported that scandium (Sc) doping in AlN films enhances the coupling factor. In the IDT/ScAlN film/diamond substrate structure, the maximum  $K^2$  of approximately 5.5% in the 1st mode RSAW is approximately 4.6 times higher than that in the AlN film/diamond substrate structure<sup>2</sup>). Furthermore, the  $K^2$  of 15.3% in the 1st mode RSAW on ScAlN films/IDT/polarity inverted ScAlN film/diamond substrate structure was approximately 2.8 times higher than that in IDT/ScAlN films/diamond substrate structure<sup>3</sup>).

In this study, 0th-3rd mode SAW propagation characteristics on ScAlN film/high velocity AlN or boron nitride (BN) substrate structure were analyzed to find the optimal structure for high  $K^2$  and high frequency. Moreover, we analyzed the characteristics of the 3rd mode RSAW propagating on the polarity inverted ScAlN film/high velocity BN substrate. The effect of the boundary position of the polarity inverted ScAlN film on the  $K^2$  of the higher mode RSAW was also investigated by finite element method (FEM).

# 2. RSAW propagation on ScAlN films/AlN or BN substrate

The phase velocity and  $K^2$  of RSAW on the (0°,0°,0°) ScAlN film/(0°,0°,0°) AlN or BN substrate structure were analyzed by Farnel and Adler's SAW propagation analysis. AlN (phase velocity  $\approx 5,700$  m/s) and BN (phase velocity  $\approx 11,000$  m/s) were used as the substrate because they have a higher phase velocity than ScAlN film. **Figure 1** shows the relationships between the  $K^2$  of 0th, 1st, 2nd, and 3rd mode RSAWs and



Fig. 1 The relationships between the  $K^2$  and ScAlN film thickness  $h/\lambda$  on (a)ScAlN film/AlN substrate structure and (b)ScAlN film/BN substrate structure.

Table I The maximum K<sup>2</sup> and phase velocity for each mode RSAW on ScAlN film/AlN substrate structure and ScAlN film/BN substrate structure.

| Ser in Chilly Di Coussiluite Surdeture. |            |             |              |             |
|-----------------------------------------|------------|-------------|--------------|-------------|
| substrate                               | mode       | $h/\lambda$ | V[m/s]       | $K^{2}[\%]$ |
| AlN                                     | 0th        | 0.075       | 5519         | 0.73        |
|                                         | 1st        | 0.778       | 5540         | 2.64        |
|                                         | 2nd        | 1.335       | 5438         | 0.87        |
|                                         | 3rd        | 1.589       | 6077         | 0.66        |
| BN                                      | 0th        | 0.355       | 5534         | 0.87        |
|                                         | 1st        | 0.559       | 6863         | 4.85        |
|                                         | 2nd        | 0.965       | 6795         | 1.72        |
|                                         | 3rd        | 1.205       | 7222         | 1.89        |
|                                         | 2nd<br>3rd | 0.965       | 6795<br>7222 | 1.72        |

ScAlN film thickness  $h/\lambda$ . The maximum  $K^2$  and phase velocity for each mode RSAW are shown in the **Table I**. The SAWs on the ScAlN film/BN substrate structure had a higher phase velocity and a higher  $K^2$  than those on ScAlN film/AlN substrate structure, because their SAW particles were more concentrated in the ScAlN film. This is due to the fact that the phase velocity of a single crystal BN substrate is approximately twice as higher as that of a single crystal AlN substrate. In both structures, the highest  $K^2$  were observed in the 1st mode RSAW. The maximum  $K^2$  of the 2nd and 3rd mode RSAW were smaller than that of the 1st mode RSAW, and the phase velocity were almost the same as that of

g20te013@ymanashi.ac.jp masashis@yamanashi.ac.jp

1st mode RSAW. However, in BN substrate, the maximum  $K^2$  of the 2nd and 3rd mode RSAWs were higher than that of 0th mode RSAW.

Next, we investigated the effect of polarity inverted ScAlN film on the  $K^2$  of 0th-3rd mode RSAW on ScAlN film/BN substrate. The phase velocity and  $K^2$ of 0th-3rd mode RSAW on (0°,0°,0°) ScAlN film/(0°,180°,0°) ScAlN film/(0°,0°,0°) BN substrate structure was analyzed by Farnel and Adler's SAW propagation analysis. The total thickness of the twolayered ScAlN films was set to where the  $K^2$  of each mode RSAW was maximum shown in Table I. Figure 2 shows the relationship between the  $K^2$  of each mode RSAW and 1st layer ScAlN film thickness  $h_{1st}/\lambda$ . The  $K^2$  of each mode RSAW was enhanced by the polarity inverted ScAIN film structure, and the phase velocity did not significantly change. Moreover, the maximal  $K^2$ in 2nd mode RSAW appeared at  $h_{1st}/\lambda=0.358$ . The maximal  $K^2$  in 3rd mode RSAW also appeared at  $h_{1st}/\lambda = 0.250$  and 0.664. These enhancements of  $K^2$  on polarity inverted ScAlN film structure were also confirmed in the polarity inverted ScAlN film/AlN substrate structure. In addition,  $K^2$  of 0th, 1st, 2nd, and 3rd mode RSAWs are zero at  $h_{1st}/\lambda = 0.135, 0.443, 0.844,$ and 1.099 respectively.

#### 3. Finite Element Method Analysis

The frequency characteristics of admittance on IDT/one-layered ScAlN film/BN substrate and IDT/polarity inverted two-layered ScAlN films/BN substrate structure with maximum  $K^2$  were analyzed by the FEM (Femtet, Murata software) shown in Fig. 3. The effective coupling factors  $(K_{eff}^2)$  of 3rd mode RSAW resonance were 1.84% in one-layered ScAlN film/BN substrate structure and 3.05% in polarity inverted two-layered ScAlN film/BN substrate structure. In addition, the color map in the Fig. 2 shows the particle displacement of  $x_3$  direction at resonant frequency in 3rd mode RSAW. The particle displacements were almost the same regardless of  $h_{1st}/\lambda$ . The particle displacement concentrated at depth/ $\lambda$ =0.194, 0.573, and 0.925. Setting the boundary of polarity inverted structure at the position, where the particle displacement is concentrated close at the film surface, can enhance the  $K^2$  of 3rd mode RSAW effectively. If the boundary of polarity inverted structure is set at the all position where the particles are concentrated shown in color map in Fig. 2,  $K^2$  of 3rd mode RSAW may be more enhanced. Therefore, we analyzed the frequency characteristics of admittance on Al IDT/polarity inverted four-layered ScAlN film/BN substrate structure. The  $K_{eff}^2$  of 3.41% in the fourlayered ScAlN films structure is about 1.85 times higher than that in one-layered ScAlN film structure, and about 1.12 times higher than that in two-layered structure. However, resonant frequency of four-layered ScAlN films structure is lower than that of one-layered and two-layered ScAlN films structure.



Normalized ScAIN inverted film thickness h<sub>1st</sub>/λ

Fig. 2 The relationships between the  $K^2$  and polarity inverted ScAlN film thickness  $h_{1st}/\lambda$  on  $(0^\circ, 0^\circ, 0^\circ)$  ScAlN film  $/(0^\circ, 180^\circ, 0^\circ)$  ScAlN film $/(0^\circ, 0^\circ, 0^\circ)$  BN substrate structure. Color map shows the particle displacement of  $x_3$  direction at resonant frequency of 3rd mode RSAW with maximum  $K^2$ .



Fig. 3 The 3rd mode RSAW frequency characteristics of the admittance in Al IDT/one-layered ScAlN film/BN substrate structure, IDT/polarity inverted two-layered ScAlN films/BN substrate structure, and IDT/polarity inverted four-layered ScAlN films/BN substrate structure.

#### 4. Conclusion

We analyzed the higher mode RSAW propagation characteristic and admittance characteristics of polarity inverted ScAlN film/AlN, BN substrate. In all modes,  $K^2$  was higher in the ScAIN film/BN substrate structure than that in the ScAlN film/AlN substrate structure. The  $K^2$  of the 3rd mode RSAW on polarity inverted two-layered ScAlN films/BN substrate structure was about 1.63 times higher than that of ScAlN film/BN substrate structure. The  $K_{eff}^2$  was further enhanced by using polarity inverted four-layered ScAlN films structure.

#### References

- S. Sikata, *et al.*, New Diamond and Frontier Carbon Technology, 9, pp. 75-92 (1999).
- [2] K. Hashimoto, et al., 2012 IEEE Int'l Ultrason. Symp., pp. 1-4 (2012).
- [3] T. Yanagitani, et al., Jpn. J. Appl. Phys., 60, SD0803 (2021).