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1. Introduction 

Regularization is efficient processing to 
stabilize a large system of equations derived in 
various fields.1 A well-known regularization is 
based on the Tikhonov’s regularization2. Although 
the original regularization uses an L2-norm of an 
unknown vector, an improved one uses an L2-norm 
of a gradient and/or Laplacian of the unknown 
vector as well.3 Recently, L1-norm is also used. The 
singular-value decomposition (SVD) also outputs a 
useful result, although an amount of calculations is 
larger than the regularizations. Downsampling is 
also well performed. Commonly, amplification of 
high frequency noises is suppressed. 

In our case, various new regularizations are 
performed for superresolution of a medical 
ultrasound (US) echo image (eg., ref. 4), US 
Doppler measurement such as blood flow and/or 
tissue motion/strain (eg., old ref. 5), thermal and 
mechanical reconstructions (eg., old refs. 6 and 7), 
etc. We are also performing comparison of the 
above-mentioned regularization methods, the 
maximum a posteriori (MAP) method,8,9 the 
maximum likelihood (ML) method8,9 and the 
weighted least squares method1. In this report, the 
MAP is also regraded as a kind of regularization. 
 

2. New regularizations 

2.1 Approaches 

The traditional regularizations are performed 
such that the errors of equations derived for targets 
and those of direct relations to targets (penalty 
terms) are same.2,3 In contrast, our developed 
regularizations are performed such that the penalty 
terms are weighted properly using regularization 
parameters based on the statistically evaluated 
errors of penalty terms.4-7 For all the stabilizations 
including the traditional ones, we had recognized 
that it is computationally efficient to perform 
weighting multiplications onto the equations and/or 
the penalty terms instead of traditional weighting 
divisions. 
    Similarly to the traditional regularizations, our 
developed regularizations can also be performed 
empirically. However, the regularization parameters  

 
Fig. 1 SNRs of axial and lateral strains versus window 

size used for estimating variances. 

 
can also be systematically determined using the 
generalized cross validation (GCV) method, etc. by 
mathematically considering the condition number 
of a matrix to be inverted. Alternatively, we can 
also perform the determination automatically by 
controlling the regularization parameters with 
evaluating a signal-to-noise ratio (SNR) and/or a 
contrast-to-noise ratio (CNR) as a metric [eg., 5]. 
 

2.2 Doppler measurements and reconstructions 

    For blood flow and/or tissue motion/strain 
Doppler measurement, and thermal and mechanical 
reconstructions, we have been performing all the 
regularizations. For the real-world displacement 
measurement, all the regularizations are more 
effective than the ML and weighted least squares 
method. Particularly, our developed regularization 
and the MAP are effective. In our displacement 
vector measurement, we apply the regularizations to 
the respective displacement components, which we 
refer to as the displacement-component-dependent 
regularizations.  Our developed regularization is 
compared with the MAP for uses of the L2-norms 
of a target vector9 and the Laplacian (a modified 
MAP)10. The stabilization and calculations of 
MAPs are much more intense than those of our 
developed regularizations, which can result in 
extra-regularization. Now a proper window size 
used for the locally stationary variance estimation 
of penalty terms is also examined. Fig. 1 shows for 
an agar phantom laterally compressed the SNRs of 
axial and lateral strains measured with changing the 
window size using our previously developed 
multidimensional autocorrelation method (MAM) 
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with a moving-average size, 0.5 × 0.5 mm2 (7.5 
MHz). For such a displacement vector measurement, 
our previously developed multidimensional 
cross-spectral phase gradient method (MCSPGM) is 
also used (omitted here). Now, the performance of a 
gradient penalty term is also compared for the 
MAM and MCSPGM. 

    As another approach for estimating the 
variance is to use the Cramer-Rao Lower Bound 
(CRLB, i.e., SD: standard deviation)7: 

,  (1) 

where T is a local echo data length or a 
moving-average window size; f is a frequency; B  
is a bandwidth; SNRc is combined echo SNR and 
correlation SNR7; or a power Doppler (SD)8,11: 

,        (2) 

where R(Δt) is an autocorrelation function with a 
pulse repetition interval Δ t. These approaches 
perform a priori statistic evaluation instead of a 
posteriori one. When performing the displacement 
vector measurement, we actually perform a lateral 
modulation by performing plural steered 
beamformings or dividing spectra to yield plural 
quasi-steered beams. Thus, the variance estimations 
can be performed for respective orthogonal 
directions, i.e., axial, lateral and elevational 
directions. Thus, similarly to the above a posteriori 
regularizations, the 
displacement-component-dependent regularization 
can be performed. 

Since the stationary estimation, the CRLB 

and the power Doppler can also be used for 

estimating a displacement variance in each steered 

beam direction, the variance estimate can also be 

divided into the respective orthogonal components 

simultaneously. Thus, the estimate can also be used 

for weighting a penalty term corresponding to each 

beam solo or with a combination of the above or 

simultaneous component estimates. 

    All the stabilization approaches can also be 
applied to the thermal and mechanical 
reconstructions. Specially, the variance of a 
displacement or a strain tensor component can also 
be used for the stabilization (e.g., ref. 7). 

2.3 Superresolution 

The regularizations, MAPs, ML and weighted 
least squares estimation can also be performed for 
the superresolution, i.e., when performing inverse 
filtering in a frequency (fast calculation) or spatial 
(slow one) domain. Our point spread function (PSF)  

 

Fig. 2 For an agar phantom, (a) raw image, and inverse 

filtered images: (b) regularized image, and MAP images 

(c) with proper regularization and (d) with extra 

regularization. 

is estimated using an averaged or nonaveraged 
autocorrelation function.1 The spatial inverse 
filtering achieves spatially shift variant processing 
by estimating the PSF, for instance, at each depth. 
The performances are compared each other for an 
agar phantom having an intense scatter (Fig. 2). For 
real-world rf-echo data, the regularizations and the 
MAPs yield favorable results. The achieved spatial 
resolutions can also be evaluated using an 
autocorrelation function (omitted). 

3. Conclusions 

    Our developed regularizations and MAPs are 

effective in real-world applications for the 

displacement measurement, and thermal and 

mechanical reconstructions. Although the practical 

performances are evaluated at first, the effect of 

noise amount in measured data also need to be 

evaluated specifically, for instance, by using an 

artificial noise. In the near future, the performances 

will also be compared with deep learning (DL) 

displacement/strain estimation, and speckle 

reduction and superresolution. 
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