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1. Introduction 
      In recent years, applications of ultrasound in 
the medical field have received significant attention 
and have been developed. The use of microbubbles 
as ultrasound contrast agents (UCAs) [1] has 
drastically improved the resolution of images.  

 In most UCAs, the microbubble is stabilized 
against dissolution by being covered by a lipid shell, 
membrane, and so on; i.e., encapsulated microbubble 
(UCA). Church [2] and Hoff et al. [3] established the 
theory of oscillations of an UCA and derived the 
equation of motion for radial oscillations. However, 
these studies were restricted to single UCA. 
Therefore, the theory for many UCAs in the 
ultrasound field should be established since many 
UCAs are usually used for diagnosis in the clinical 
field. Although our previous study [4] clarified 
propagation properties of nonlinear ultrasound in 
liquids containing many UCAs, it is restricted under 
a low-frequency long wave band. Focusing on a 
resonance band, the ultrasound may help to resolute 
body parts more precisely and nonlinear component 
of that which is enhanced induce higher harmonics 
which improves the resolution of images. 

 The present target is high-frequency short 
wave band, as an extension of previous low-
frequency long wave [4]. We then clarify the effect 
of the shell rigidity, surface tension and shell 
viscosity to various propagation properties of 
nonlinear ultrasound in liquids containing many 
UCAs and compare the result to previous result [4].  
 
2. Problem statement 

Weakly nonlinear (i.e., finite but small 
amplitude [4]) propagation of plane progressive 
ultrasound in an initially quiescent liquid uniformly 
containing many spherically UCAs (encapsulated 
microbubbles) is theoretically studied.  

At an initial state, all the dependent variables 
including the bubble radius and the void fraction 
are assumed to be uniform. The following 
assumptions are used: (i) UCAs do not coalesce, 
break up, appear, and disappear, (ii) UCA 

oscillations are spherically symmetric; (iii) liquid 
compressibility, viscosity of gas inside the UCAs, 
and the thermal conductivities of both phases are 
neglected.  

To describe the motion of many UCAs is the 
present novelty. The surrounding shell of each UCA 
is assumed as a visco-elastic (Kelvin-Voigt model 
[4]) body. We then the Church [2] (or Hoff et al. [3]) 
model as equation of motion for oscillations for 
single UCA:  
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where 𝑅∗  is the bubble radius, 𝐺,∗  shell rigidity, 
𝜇,∗  shell viscosity, 𝑝G0∗  initial gas pressure, 𝑝*∗ 
driving pressure of liquid, 𝜇!∗  liquid viscosity, 𝑑,'∗   
initial shell thickness, 𝛾 polytropic exponent, and 
𝜎∗ initial gas pressure. Noting that Rayleigh-Plesset 
type equation is usually utilized for uncoated bubble. 

 
 

Fig. 1 Conceptual illustration of an UCA 
(encapsulated bubble). 

 



 
Fig. 2 Conceptual illustration of ultrasound 
radiation in liquid containing many UCAs. 

Although our previous target is a low-
frequency long wave [4], our present target is a 
high-frequency short wave. To focus on this range, 
a set of nondimensional ratios among the physical 
parameters is determined: 
𝑅'∗

𝐿∗
= 𝛥,																

𝜔∗

𝜔.∗
= Ω,																															(2) 

where𝑅'∗  is initial bubble radius, 	𝐿∗ is the typical 
wavelength of the wave,	𝜔∗is an angular frequency 
of the sound source, 𝜔.∗  is the natural angular 
frequency, and	𝛥 and Ω	are constants of 𝑂(1). 

 
Fig. 3 The dispersion relation in bubbly liquids [4,5]. 

 
3. Theoretical analysis 

The conservation equations of mass and 
momentum for gas and liquid phases for bubbly 
medium are introduced: 
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where 𝑡∗ is the time, 𝑥∗ space coordinate normal 
to the wave front, 𝛼 void fraction (0 < 𝛼 < 1), 𝜌* 
density, 𝑢 * fluid velocity, 𝑝∗  pressure, and 𝐹∗ 
interfacial momentum transport; the subscripts G 
and L denote volume-averaged variables in the gas 
and liquid phases, respectively. In addition to the 
volume-averaged pressure 𝑝G∗  and 𝑝L∗ , the liquid 
pressure averaged on the bubble-liquid interface,  
𝑃∗, is introduced. 

As in Eq. (2), the other nondimensionalized 
rations are estimated to describe high-frequency 
short wave band in Fig. 3 as fllows:                                                
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where 𝑑,' , 𝜇0 , 𝐺, , 𝜇!  are constants of 𝑂(1), 𝜖 
is a nondimensional wave amplitude sufficiently 
small compared with unity (0 < 𝜖 ≪ 1). 

Substituting Eqs. (2) and (7) into Eqs. (1), (3)-
(6) and supplementary equations in Ref. [4] and 
equating the coefficients of like powers of 𝜖, 𝜖% , 
𝜖( in the resultant equations, we obtain three 
approximation equations; the detail of calculation is 
not shown here for the economy of space. As a result, 
we have the nonlinear Schrödinger equation, 
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𝜏 ≡ 𝜖%𝑡,							𝜉 ≡ 𝜖K𝑥 − 𝑣2𝑡L,																																(9) 
where A is the complex amplitude, q/2 denotes the 
dispersion coefficient, 𝜈1  is the nonlinear 
coefficient, 𝜈% is the dissipation coefficient, and 𝜈( 
is advection coefficient, and 𝑣2  is the group 
velocity. The explicit forms of 𝜈1, 𝜈%, and	𝜈( are 
not shown for the economy of space. The first, 
second, third, and fourth terms in Eq. (9) represent 
dispersion, nonlinear, dissipation, and advection 
effects, respectively. 

4. Summary 

To clarify the ultrasound propagation in 
liquids containing many UCAs, we extend our 
previous target as low-frequency long wave to high-
frequency short wave as a resonance band. The shell 
rigidity, surface tension, and shell viscosity 
contributed to the advection, nonlinear, and 
dissipation effects, respectively, as in Ref. [4]. Then, 
propagation feature of ultrasound with a short wave 
is similar with that with a long wave. The detailed 
result will appear in presentation and a presentation 
and a forthcoming paper. 
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