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1. Introduction 

  High-Intensity Focused Ultrasound (HIFU) 

treatment is a non-invasive surgery that focuses 

ultrasound energy from outside the body to produce 

a thermal damage in the target tissue, such as a 

cancerous tissue. In ultrasound-guided HIFU 

exposure, the interference between therapeutic and 

diagnostic ultrasound compoment makes it difficult 

to detect tissue changes. In our previous research1), 

we have proposed a noise suppression technique 

which removes only the therapeutic ultrasound 

component (HIFU noise) from the noise 

interference ultrasound image. However, the 

technique was limited in versatility because the raw 

channel signals were recquired to be processed in 

the diagnostic ultrasound system. In this study, we 

proposed a new noise reduction technique with 

deep learning technology using the ultrasound echo 

signals after the reconstruction in the presence and 

absence of HIFU noise. The noise reduction 

performance usng the proposed method was also 

investigated.  

2. Material and Methods  

2.1 Experimental setup 

 A schematic of the experimental setup is shown 

in Fig. 1. A chicken breast was used as a tissue 

sample in this study. The concave transducer was 

placed so that the HIFU focus was about 20 mm in 

depth from the surface of the tissue sample. 

Therapeutic ultrasound wave, which was generated 

by a funciton generater, was amplified by a power 

amplifier. The daiganostic ultrasound signals were 

acquired by a phased array probe with a center 

frequency of 3 MHz. The apature and curvature of 

the transducer was 46 mm. The driving frequency 

and the spatial-peak temporal-peak intensity was 

1.67 MHz and 2 kW/cm2 respectively. The water 

was degassed [dissolve doxygen (DO): 20–30%] 

and kept at 36 °C. Figure 2 shows the experimental 

sequence of HIFU exposure and data collection in 

this study. The exposure and intermission period of 

HIFU were set to 10 ms and the set of both periods 

were repeated 50 cycle so that the total exposure 

time would be 10 s. The ultrasound images with and 

without HIFU noise were acquired during each 

period and a total of 4000 data sets were obtained 

through 16-sample experiments. 
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Fig.1  Experimental setup 
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Fig.2  Experimental sequence and data collection 

 

2.2 Structure of deep learning network 

Figure 3 shows the suggested structure of a 

regression Convolutional Neural Network (CNN) 

used in this study. It consists of 4 two-dimensional 

convolution layers (Conv1-Conv4 in Fig.3). The 

input images are beamformed ultrasound images 

(demodulated IQ data) with noise. The size and 

number of channels of the input image was [64×64] 

and 1. The number of training and test data was 

3700 and 300 respectively. The kernel size and 

stride (step size) of the kernel is [3 × 3] and was 

[1×1] and padding was introduced to equalize the 

output and input kernel size. After each convolution 

layer, there are 32-channel batch processing layer, 
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rectifying linear unit (Relu) layer and the max 

pooling layer with a stride of 2 and pooling size of 

2. The final convolution layer (Conv4) was 

connected to the regression layer to have an output. 

The mean square error (MSE) was used as the loss 

function in this study. The idea was is the sum of 

squared errors of the true value (Ti) and the 

predicted (Pi) value as expressed in Eq. (1).  

𝑀𝑆𝐸 =    𝑇𝑖 − 𝑃𝑖 
2                              (1)
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where n is the number of pixels in the images. The 

total number of epochs, which is a time that the 

learning algorithm will work through the entire 

training dataset, was set to 20 in this study. 
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Fig.3 Structure of deep learning network 

 

3. Results and Discussion   

Figure 4 shows a comparison of (a) B-mode image 

during HIFU exposure, (b) noise reduced image 

using deep learning and (c) denoised images 

acquired during HIFU intermission period. HIFU is 

irradiated from left to right in these images. As 

shown in Fig.4, the HIFU noise was relatively 

removed while retaining the tissue signal in the 

image generated using deep learning. It is also said 

that hyperechoic structure to show the muscle fiber 

and the speckle patterns are reproduced in the 

almost the same way in the denoised image aquired 

during HIFU intermission period. However, the 

resolution of the image generated using deep 

learning was lower than that of denoised image. 

 To quantitatively evaluate the amount of noise 

reduciton level, the signal level at a point in no echo 

region (no refleaction area) of the images generated 

using deep learning or denoised images was 

subtracted from that of images with noise. This 

level was named as “noise reduciton level” in this 

study. Figure 5 shows comparison of noise 

reduction level between noise reduced images using 

deep learning and denoised images acquired during 

HIFU intermission period. As shown in Fig.5, the 

noise reduction level of noise reduced images and 

denoised images was -18.2 dB and -28.4 dB 

respectively. It seems that the reduciton level of 

-18.2 dB in the noise reduced image was enough to 

monitor the tissue duting HIFU exposure but it is 

needed to investigate the possibility of detection for 

the small tissue changes induced by HIFU using the 

noise reduced images. 
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Fig.4  Comparison of (a) B-mode image during 

HIFU exposure, (b) noise reduced image using deep 

learning and (c) denoised images acquired during 

HIFU intermission period 
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Fig.5 Comparison of noise reduction level between 

noise reduced images using deep learning and 

denoised images acquired during HIFU 

intermission period 

4. Conclusion 

 In this study, a new noise supperesion method 

using deep learning technology during 

utlrasound-guided HIFU treatment was suggested. 

It is said that the proposed method could selevtively 

reduce the HIFU noise during HIFU exposure and 

should be useful for real-time ultrasound imaging to 

detect the tissue changes induced by HIFU.   
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