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1. Introduction

To avoid biopsies that require removal of 
lesions, we are studying puncture ultrasound 
microscopy that measures acoustic images in vivo. 
For this purpose, it is necessary to develop an 
ultrasonic transmission / reception system that is 
compact and has a simple structure, and a 
high-resolution imaging method based on the 
system.  

Recently, structured ultrasound microscopy 
(SUM) has been proposed in which an acoustic lens 
having random and fine irregularities is attached to 
the surface of the transmission / reception side on a 
single oscillator [1][2] (see Fig. 1). Spatial coding 
is realized by the attached acoustic lens giving 
irregular aberrations to the transmitted and received 
wavefront. Unlike a typical array transducer, a 3D 
image of the ROI can be obtained from a single 
time-series echo signal, simplifying the required 
electrical circuitry. However, in order to obtain an 
image having the same resolution as the 
pathological diagnosis image, various measures are 
required. One technique for that purpose is to 
change the spatial coding of the transmitted wave in 
various ways, measure a plurality of echoes, and 
use them for imaging. The simplest method is to 
replace the acoustic lens and perform transmission 

and reception multiple times, but for efficient and 
stable measurement, a method of dynamically 
changing the transmitted wave is suitable. 

In this study, as an application of the 
stochastic resonance phenomenon [3][4], we are 
investigating a measurement method that irregularly 
changes the position and transmission frequency of 
the oscillator. In this paper, as a basic study, the 
degree of fluctuation of the echo signal received in 
this way is confirmed by the finite element method 
simulation.  

2. Method

When the measured time-series echo data is 
𝐲 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑁]𝑡and the discretized reflectance
distribution in the ROI is represented by 𝐱 =
[𝑥1, 𝑥2, ⋯ , 𝑥𝑀]𝑡 as a one-dimensional vector, the
following measurement model can be considered.  

𝐲 = 𝐂𝐱 + 𝐧,    (1) 

where the 𝑁 × 𝑀 matrix C consists of transmission 

signal information and is sometimes called a 

dictionary matrix or a design matrix. The 

N-dimensional vector n is the observed noise. Given 

the observation y, restoring x is the problem to be 

solved. As C is known, the problem of finding the 

vector x where many components are 0 is generally 

called compressed sensing. On the other hand, the 

problem of finding C and x at the same time with x as 

a sparse vector is often called sparse modeling. In 

compressed sensing, the solution x is calculated each 

time y is obtained.  

In this study, it is first necessary to find the 

matrix C determined for the measurement system. 

That is, it deals with sparse modeling. In sparse 

modeling, the problem is to find C for many sets of y 

and x, where x is unknown. In the framework of this 

research, it is required to measure y for various 

imaging objects and determine a common C for them. 

At this time, if an appropriate sparse model is not 

established, subsequent restoration of x cannot be 

performed sufficiently. Specifically, it is desirable that 

the column vector groups constituting C have high 

linear independence.  Fig.1 SUM configuration [1]. 



The simulation model was shown in Fig. 2. 

We measured the echo signal for each target postion 

labeled 1-6.  

Furthermore, we plan to measure with 

different matrices C by moving the oscillator position 

back and forth and changing the transmission 

frequency band. In the learning phase, we determine 

multiple matrices {𝐂1, 𝐂2, ⋯ , 𝐂𝐿} . In the inference 

phase, the unknown x, or 3D image, common to the 

observation groups {𝐲1, 𝐲2, ⋯ , 𝐲𝐿},  each 

corresponding to each 𝐂𝑖  (𝑖 = 1, 2, ⋯ , 𝐿) is restored. 

The higher the independence of 𝐂𝑖, the higher the 

resolution of x can be restored. 

In this system, the discrimination of 

reflections in the depth direction is performed by the 

time delay of the echo. On the other hand, the lateral 

discrimination of the same depth will be based on the 

difference in the transmitted and received waveforms, 

that is, the difference in the corresponding column 

vectors of the matrix C.  

Therefore, at several different depths, the 

correlation coefficient of the similarity of the echoes 

from the laterally displaced points was evaluated with 

reference to the echoes from the central position. The 

echoes are treated as IQ (In-phase / Quadrature-phase) 

signals. Assuming that the two IQ signal vectors are 𝐩 

and 𝐪, the similarity 𝑆(𝐩, 𝐪) can be defined by the 

following equation.  

 

𝑆(𝐩, 𝐪) ≡
𝐩𝐻𝐪

√𝐩𝐻𝐩√𝐪𝐻𝐪
.      (2) 

A comparison was made between the fine and rough 

random patterns of the acoustic lens. Further, based on 

the above results, changes in echo similarity were 

similarly evaluated when the position of the oscillator 

was changed back and forth and when the 

transmission frequency was changed.  

                                                                               

3. Results and Discussions 

The correlation coefficients of echo signal 
are graphed in Fig. 3, Fig. 4, and Fig. 5. Moving 
the oscillator in back-forth with three positions 
shows the same trend of correlation cofficient. The 
model also shows the effect of varying the 
transmitted frequency to the echo signal. The 
changing correlation coefficient by increasing the 
number of pattern of mask decreases the simillary 
of the echo signals.       

 

4. Conclusion and Future Work 
   In this paper, we reported the SUM model 
with irregular thickness mask placed in front of 
oscillator. The echo signals were collected with 
some mesurement mechanism. In the future, the 
model will be extended to 3D dimension for 
constructing a 3D image. The fine and rough 
irregular pattern mask shows more different echo 
signals.  
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Fig. 2 Simulation model. 

 
 

Fig. 3 Correlation coefficien of echo signals each 

target position with changing the oscillator position. 

 
 

Fig. 4 Correlation coefficien of echo signals each 

target position with changing the transmitted signal 

frequency. 

 
 

Fig. 5 Correlation coefficien of echo signals each 

target position with changing number of the random 

pattern of mask. 
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