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1. Introduction
Piezoelectric materials, such as Lead 

Zirconate Titanate Pb (ZrxTi1-xO3) (PZT) is well 
known for its superior electromechanical conversion, 
since it has the larger piezoelectric coefficients. 
These piezoelectric materials play a vital role in 
several industrial and military applications, such as 
optoelectronic, telecommunication, biomedical 
devices, actuators, structural health monitoring 
(SHM) and energy harvesting devices 1-3). PZT 
ceramics are widely used as transducers in SHM 
applications as they possess several inherent 
advantages such as broad-band operational 
frequency, better electromechanical coupling, easy 
integrations on the sample surface, and impedance 
matching with various substrates. SHM is a broader 
path of study for enhancing the reliability and 
operational life of various civil and mechanical 
structures.  

Denoising methods can be broadly classified 
into spatial domain methods and transform domain 
methods. Spatial filters which are further categorized 
into linear and non-linear filters utilizes low pass 
filtering on image pixel values as the noise tends to 
occupy higher regions in the frequency spectrum4). 
In ultrasonic, the image is normally considered as an 
accumulation of signals and the existence of noises 
degrade the image quality. The noisy image reduces 
the image contrast, edges, textures, object details, 
and resolution, thereby decreasing the performance 
of post-processing algorithms. Recently, artificial 
intelligence (AI) and, more specifically, deep 
learning (DL), approaches have achieved the state-
of-the-art results for many denoising algorithms. 
Convolutional neural network (CNN) is a well-
known dimension reduction technique and has 
proven to be highly effective in extracting useful 
features from an image. CNN derived autoencoder is 
a specific type of feed forward neural network that 
compresses the input image into a lower dimensional 
representation and reconstructs the output from the 
same.  

To achieve the problem, we propose a 
physics-based modeling of noise and generate 
training samples combined with a deep autoencoder 
for denoising. We have shown that the proposed 
method can effectively reduce the noise in 
experimental data. 
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2. Experimental Setup  
A detailed description of the excitation and 

detection principle, working principle, probe 
fabrication, and the experimental setup has been 
published before by our group 5-9). The experimental 
technique was optimized for an efficient coupling of 
the electric field with elastic modulus and 
permittivity of piezo ceramics. This novel 
experimental technique for point contact excitation 
and detection based on Coulomb coupling, is 
developed for the excitation and detection of 
ultrasonic waves in a piezo-electric materials. 

After completing the healthy state 
experiment, a calibrated damage was introduced 
using a high-speed diamond drill on the surface of 
the PZT ceramic. The dimension of the damage was 
approximately 1.21.3 mm2 and 1.5 mm in depth.  

 
Fig. 1. Optical image for surface flaw for the PZT ceramic 

sample. The size of the defect is 1.2 mm × 1.3 mm and 1.5 mm 

in depth. 

 A default noise adding option from 
oscilloscope (Agilent 3024A) was employed for 
adding noise in the excitation signal and performed 
the imaging. 
 
3. Results and discussion  

Autoencoder introduced by Vincent 10), is an 
unsupervised deep learning algorithm that leverages 
deep neural networks for dimensionality reduction 
and feature extraction. It learns to compress the 
input representation and learns the subsequent 
reconstruction of the input. It consists of an 
encoding function, a decoding function, and a loss 
function which computes the amount of information 
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loss between the compressed and the decompressed 
representation of the input. 
 

 
Fig. 2. Flowchart of the data acquisition to denoising 

process of the ultrasound images 

We have extracted 60K (6464) clean images from 

the time-series data. We generated 5 different  

 

Fig. 3A. Noisy, speckle denoised, salt-pepper denoised 

and ground truth images of ultrasonic waves at three 

different time frames.  Fig. 3B. PSNR and SSIM values 

of speckle denoised images. 

 

training sets containing 48K images each, corrupted 
with 30% noise of 5 different types namely, speckle, 
gaussian, Poisson, salt-pepper, and combination of 
all. A convolutional autoencoder (CA) is trained 
independently on each training set with noisy image 
as input and corresponding ground truth image as 
the target output. We created a validation set with 
remaining 12K images following the same 
procedure and used it for tuning the CA 
hyperparameters. The model is trained with MSE 
loss over 500 epochs with early stopping using 
stochastic gradient descent optimizer. We have used 
different learning rates for each training set, ranging 
between 0.05 - 0.13. The module is implemented in 
python using tensorflow framework. 
 
 For testing all the 5 CA models, we used 
original noisy images obtained from the experiment 
containing 30% noise of unknown distribution. 

PSNR and SSIM are used as evaluation metrics 
along with manual inspection for quantitative and 
qualitative assessment of the denoised images. The 
combined noise model’s performance was highly 
deteriorated and therefore was not considered for 
further analysis. Out of remaining 4 models, speckle 
noise model proved to be superior of all with 
appreciable PSNR and SSIM values (Fig. 3B). The 
Salt-pepper noise model had the lowest performance 
of all 4 models. Both metrics provide different 
aspects of requirement. PSNR provides higher 
visual interpretation, whereas the SSIM can be used 
to measure much finer similarity. 
 
4. Conclusion 

 In this study, the two-dimensional spatial 

temporal evolution of waves in the PZT is imaged 

using point contact excitation and detection method, 

and a novel deep learning based architecture of 

convolutional autoencoder is proposed for denoising 

the ultrasonic images. The PSNR and SSIM metrics 

in addition to manual inspection show that the model 

trained on speckle noise performed exceptionally 

well achieving state-of-the-art results and manifests 

the immense potential of AI in denoising. 
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