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1. Introduction 

    Ultrasonic motors(USM) have long attracted 

researchers due to their superior features; however, 

these benefits cannot be harnessed without a proper 

control scheme [1]. Unfortunately, common linear 

controllers like PID or LQR cannot be optimally 

applied to USM. Developing these controllers would 

require linearization of the USM model which is 

inherently nonlinear and suffers from frequency drift, 

hysteresis, and jumping phenomena. Nonlinear 

controllers like MPC, ILQR, Fuzzy controllers, and 

Neural Networks would require some model of the 

system, expert knowledge, or supervised learning. 

These requirements can limit the design process of 

the controller. Thus, there is a need for a model-free 

nonlinear semi-supervised controller. 

2. Reinforcement Learning (RL) Control  

    RL is a model-free controller that can apply an 

optimal nonlinear control regime by interacting with 

the environment. If the control objective can be 

formulated as an MDP (Markov Decision Process) 

problem, RL can learn a policy (𝜋) that maximizes 

the total sum of rewards (𝑅𝑡) over time [2] (Eq. 1). 

𝑉𝜋(𝑠) = 𝐸𝜋{∑ 𝛾𝑡𝑅𝑡
∞
𝑡=0 |𝑠𝑡 = 𝑠}  (1) 

    There are various approaches to learning the 

optimum policy, out of which Q learning can be most 

suitable for our speed control objective. Q-learning 

is a model-free RL algorithm that can directly learn 

the mapping from states ( 𝑆𝑡 ) to actions (𝐴𝑡 ) by 

interacting with the environment. The Bellman 

optimality equation of Q-value for a state 

action pair Q(𝑆𝑡, 𝐴𝑡) is a sum of the immediate 

reward of the current state as well as the discounted 

reward of all future states as in Eq. 2. Thus, RL can 

solve tasks with long-time dependency. At state (𝑆𝑡), 

a greedy action (𝐴𝑡) is chosen from a set of discrete 

actions by maximizing 𝑄(𝑆𝑡 , 𝑎) over action (𝑎) as 

in Eq. 3. In the case of continuous action space, a 

continuous policy network is required but with the 

same objective of optimizing the Q-value.  

Q(𝑆𝑡, 𝐴𝑡) = 𝑅𝑡 + 𝛾 𝑚𝑎𝑥𝑎(𝑄(𝑆𝑡+1, 𝑎)) (2) 

𝐴𝑡 = 𝑚𝑎𝑥𝑎(𝑄(𝑆𝑡 , 𝑎))   (3) 

3. RL USM Speed Control 

    To apply RL to USM speed control, a few terms 

need to be defined. First, the RL controller (agent) 

should control the frequency (action) to minimize the 

speed error between target and measured speed. Thus, 

the MDP problem can be formulated as shown in Fig. 

1. Given the current state of the system ( 𝑆𝑡   a 

continuous function of USM state and target speed), 

the agent decides an action ( 𝐴𝑡   a discrete or a 

continuous frequency update step). Accordingly, the 

agent receives a reward (𝑅𝑡  preferably a continuous 

reward function that is maximum at optimal 

behavior). The system state is updated (𝑆𝑡+1 ) and 

used for deciding the next action.  

    For USM speed control, the system state can 

incorporate many variables. In its simplest form, we 

control the USM at constant torque (no-load), 

preload, driving voltage amplitude, and phase. In 

that case, the USM speed can be simplified as a 

function of driving voltage frequency (𝑓𝑡) and USM 

temperature (𝑇𝑡 ). However, due to the hysteresis 

effect, the measured speed can vary even under the 

same frequency and temperature. Thus, we add the 

current USM (𝑉𝑟𝑡
 ) speed to make the system state 

fully observable. Finally, target speed (𝑉𝑟𝑒𝑓𝑡
) should 

be an additional state variable as it is critical for 

deciding the optimal frequency action. Since our 

control problem is continuous in both the state space 

and the action space, a neural network representation 

is used. Out of the many Deep RL architectures, soft 

actor-critic (SAC) was applied due to its state-of-the-

art performance [3]. SAC maximizes both expected 

reward, and the state entropy, so it is stable in 

stochastic environments. 

 
Fig. 1 MDP representation of USM speed control 
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4. Results  

    To evaluate the effectiveness of RL for USM 

speed control, a simplified equivalent circuit model 

(ECM) of USM was developed. The stator vibration 

amplitude ( 𝑝 ) under given frequency ( 𝜔 ) was 

calculated by solving the angular equation in Eq. 4. 

In Eq. 5, speed ( 𝑉𝑟 ) is directly proportional to 

amplitude ( 𝑝 ) with some constant ( 𝐾 =
60×ω×h

(2π𝑟2)
). 

Additional nonlinearity was hardcoded to simulate 

the pullout phenomena. If 𝜔  is lower than some 

threshold, 𝑉𝑟  goes to zero. As the temperature 

increases, the PZT softens, and the stiffness ( 𝑐 ) 

decreases. As a result, the frequency response drifts 

towards lower frequency as temperature increases as 

shown in Fig. 2.  

𝑚�̈� + 𝑑�̇� + 𝑐𝑝 = Θ𝑉0𝑒𝑗(𝜔𝑡+𝜓) + 𝐹𝑁 + 𝐹𝑇 (4) 

𝑉𝑟 = 𝐾𝑝 ∗ (𝜔 > 𝜔𝑝𝑢𝑙𝑙𝑜𝑢𝑡) (5) 

 
Fig. 2 Simulated USM speed response using ECM 

    In the MATLAB/SIMULINK environment, the 

USM model was developed, and combined with the 

SAC RL agent from the Reinforcement Learning 

Toolbox. The frequency action was continuous and 

constrained between [-2,2] kHz. The reward function 

was defined as the negative absolute speed error 

(−|𝑉𝑒𝑟𝑟|). The training process was carried out for 

200 episodes, each of which lasted for 30 steps 

(arbitrary). Each episode was initialized at a different 

initial frequency [35,45] kHz, and a different target 

speed [0,150] rpm. The learning curve is shown in 

Fig. 3. During early episodes, the episodic reward is 

low and fluctuating severely. Around the 50th episode, 

the reward started steadily increasing and nearly 

stabilized. During training, SAC uses stochastic 

actions, and thus some reward fluctuations exist. 

Another reason is the random initialization of 

frequency and target speed.    

 
Fig. 3 Learning curve for the RL speed control 

    To evaluate the performance of the RL speed 

control in simulation, a sinusoidal target speed 

was tracked for an extended simulation time. The 

target speed was realized even with temperature 

rise as shown in Fig. 4. However, the speed 

tracking is imperfect, and some speed error still 

exists. Modifying the reward function and the 

network architecture can reduce this error. 

Experimental results of RL are shown in Fig. 5. 

Due to measurements delay and noise, the 

tracking has some delays as well. Such delayed 

response can cause the RL agent to learn wrong 

sequences of ( 𝑆𝑡 → 𝐴𝑡 → 𝑅𝑡 → 𝑆𝑡+1 → ⋯ ) 

causing suboptimal policy. Further improvement 

of the experimental setup is a concern of current 

research.   

 
Fig. 4 Speed tracking using RL (Simulation) 

 
Fig. 5 Speed tracking using RL (Experiment) 

5. Conclusion 

In this research, RL was proposed for speed 

control of USM. The results showed that RL can 

effectively track desired speeds under changing 

operating conditions. Future research will focus on 

reward function design, network architecture 

optimization, hardware development, and operation 

under varying conditions like load torque, preload, 

or voltage amplitude 
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