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1. Introduction 
     In the early stages of atherosclerosis, vascular 
endothelial dysfunction occurs. We have developed 
an ultrasound probe that can simultaneously measure 
the blood pressure and the vessel diameter, to 
evaluate endothelial function by measuring 
viscoelasticity during the flow-mediated dilatation 
(FMD) [1]. As the blood pressure measurement with 
the probe requires deforming the blood vessel, it is 
necessary to consider the effect of the change in 
vessel shape for the viscoelasticity estimation [2].  
    In the present study, we derived a series of 
equations to estimate the elastic modulus 
considering the change in the cross-sectional shape 
of the blood vessel from the circle due to the pushing 
pressure by the ultrasound probe, and examined the 
validity of the equation by numerical calculations 
using the parameters in the actual measurements. 
 
2. Method 
     First, the circumferential and axial 

incremental strains, Δεθ and Δ𝜀𝑧 , of a 

homogeneous isotropic material are respectively 

expressed in the polar coordinate system by the 

following equations: [3] 
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where Δ𝜎𝑟 , Δ𝜎θ  and Δ𝜎𝑧  are the incremental 

stresses in the radial, circumferential, and axial 

directions, respectively, and 𝐸  is the elastic 

modulus, and ν is the Poisson's ratio. As the blood 

vessels are axially constrained in vivo, the Δ𝜀𝑧 can 

be assumed to be negligible. The arterial wall is 

assumed to be incompressible. Then, the following 

equation is obtained from Eq. (2). 

Δσ𝑧 =
1

2
(Δ𝜎𝑟 + Δ𝜎θ). (3) 

     Next, we consider the balance of forces when 
the radial artery is deformed by the internal pressure 
due to the heartbeat and the pushing pressure due to 
the ultrasound probe. The cross-section of the artery 

is assumed to be deformed from the circle to the 
ellipse as shown in Fig. 1(a) due to the uniform 
pushing pressure applied on the upper surface along 
the y-direction. Figure 1(b) shows the magnified 
view in the shaded region in Fig. 1(a). In Fig. 1(b), 
𝑝1  is the intravascular pressure, 𝑝2  is the 
atmospheric pressure, and 𝑝3  is the pushing 
pressure by the ultrasound probe. Moreover, 𝑇  is 
the tension acting in the circumferential direction of 
the vessel, 𝑟  is the curvature radius in the micro-
region of the ellipse, and ℎ is the thickness of the 
vessel wall. We assumed that ℎ  does not change 
during the deformation from the circle to the ellipse 
and its uniformity within the micro-region.  
     Let us consider the relationship between the 
change d𝑇  in 𝑇  within the micro-region and the 
balance with the force in the x and y directions acting 
on the micro-region. By eliminating d𝑇  from the 
equations in the two directions and ignoring the 
terms larger than the square of the small amount, 𝑇 
is given by  

𝑇 = 𝑟 (𝑝1 − 𝑝2 −
tan2 γ

1 + tan2 γ
𝑝3)

−ℎ (𝑝2 +
tan2 γ

1 + tan2 γ
𝑝3) . (4)

 

     If σθ  is constant along 𝑟  direction,  σθ  is 
obtained by dividing both sides of Eq. (4) by ℎ as  
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Fig. 1. The balance of forces in the vascular wall.  
(a) Schematic diagram of cross section of the blood 
vessel, (b) the magnified view of the micro-region of 
blood vessel wall. 
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where 𝑎, 𝑏, and θ are shown in Fig. 1(a). On the 
other hand, the radial stress 𝜎𝑟  is obtained by the 
balance of the radial partial forces of 𝑝1  in the 
lumen, and 𝑝2  and 𝑝3  in the outer surface as 
follows  

𝜎𝑟 = −
1

2
(𝑝1 + 𝑝2 +

𝑎 tan θ   

√𝑎2 tan2 θ + 𝑏2
𝑝3) . (6) 

By substituting  Δ𝜀𝜃  and the incremental stresses 
Δσθ calculated from Eqs. (3), (5), and (6) into Eq. 
(1), elastic modulus 𝐸 can be estimated, where Δ𝜀𝜃 
is calculated from the change in the vessel diameter 
measured by ultrasound. 
 
3. Experiment 
     We numerically obtained σθ  to verify 
whether the derived stress σθ represents the actual 
movement of the blood vessel during the elasticity 
measurement. We substituted 𝑝2  = 1013.25 hPa, 
𝑝3 = 150 mmHg, 𝑎 = 1.2 mm, 𝑏 = 0.7 mm, and ℎ 
= 0.43 mm into Eq. (5), and varied θ from 0° to 
180° . σθ  was obtained by substituting 𝑝1  = 120 
and 72 mmHg in systole and diastole, respectively. 
The incremental stresses from diastole to systole 
were also calculated. As it is difficult to measure ℎ 
in the radial artery in vivo, it was set to 0.43 mm in 
literature [4].  
     To examine the relationship between σθ and 
the vessel shape, σθ  was obtained by varying the 
aspect ratio of the cross-section of the vessel 𝑎/𝑏 
from 1 to 3. In addition, to examine the relationship 
between 𝑝3  and σθ , σθ  was obtained by varying 
𝑝3  from 0 to 150 mmHg. When calculating the 
shape and the pushing pressure dependence, σθ 
was obtained at θ = 0°  because the ultrasound 
beam which passes through the center of the vessel 
was used for the strain measurement. 
 

4. Result and Discussion 
     Figure 2(a) shows the calculated results for 
the θ  dependence of σθ  using Eq. (5) at systole, 
diastole, and the increment from diastole to systole 
by red, blue, and green lines, respectively. Figure 
2(a) shows the minimum and maximum values at 
θ = 0°  and 90°  for both systole and diastole, 
respectively, where the negative (positive) stress 
compresses (elongates) the vessel wall. When the 
cross-section of the blood vessel was deformed from 
the circle to the ellipse by the pushing pressure, the 
blood vessel wall elongates circumferentially in the 
short axis and contracts circumferentially in the long 
axis because the stress exits to balance the force. The 
incremental stress became maximum in the short 
axis (θ=0°) and minimum in the long axis (θ=90°). 
Since the displacement in the short axis is larger than 
that in the long axis when the internal pressure is 

applied to the ellipse [5], this result is reasonable. 
     Figs. 2(b) and 2(c) show the calculated results 
for the shape and pushing pressure dependences 
of σθ , respectively. From Fig. 2(b), as the aspect 
ratio 𝑎/𝑏 increased, that is, the cross-section of the 
vessel deformed, σθ decreased but the incremental 
stress increased. As the deformation of the cross-
section of the vessel increased, the maximum strain 
of the vessel increased during one heartbeat. 
Therefore, this result is also reasonable. 
     As shown in Fig. 2(c), the incremental stress 
did not change while σθ  decreased as 𝑝3 
increased. As the pushing pressure 𝑝3  increased, 
the blood vessel deformed and the stress increased in 
the compressive direction to balance this. On the 
other hand, the incremental stress was constant if the 
pushing pressure was constant during one heartbeat. 
Therefore, we consider that the elasticity 
measurement at rest was stable in the previous study 
[6]. 
 

5. Conclusion 
     For the elasticity measurement of the radial 
artery vessel wall using a single ultrasonic probe, the 
equations to estimate the elastic modulus 
considering the pushing pressure by the ultrasonic 
probe and the shape change of the vessel were 
derived. From the numerical calculations, it was 
confirmed that the trend of the variation was 
consistent with the results of the previous 
measurements. We plan to apply these equations to 
actual elastic modulus measurements in the future. 
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Fig. 2. The dependence of each parameter on σθ. 

(a) θ, (b) 𝑎/𝑏, (c) 𝑝3. 
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