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1. Introduction 

The ultrasonic wave propagation in an 
elongated material might produce the dispersion 
relation in terms of frequency and wavenumber. The 
semi-analytical finite element method[1] (SAFE) has 
been widely used for solving the wave propagation 
mode with an arbitrary cross-section. In the SAFE, 
the target region is discretized in the cross-section, 
while an analytical solution is adopted in the wave 
propagation direction. The SAFE is formulated in the 
frequency domain; the dispersion relation can be 
calculated discretely by sweeping the frequency step 
by step. Since the dispersion curve becomes tangled 
for materials that have complicated cross-section and 
inhomogeneity, it sometimes would be difficult to 
evaluate the continuity of a mode.  

In this study, we propose a mode tracking 
method that contributes to classifying propagation 
modes by combining the numerical continuation 
method[2] (NCM) with the SAFE. Here, algebraic 
nonlinear equations are formulated from the 
conventional SAFE. Since the solution set forms a 
differentiable curve, the NCM tracks the curve 
continuously and calculates the solutions iteratively. 

 
2. Continuous Mode Tracking Method 
1.1 Semi-analytical finite element method (SAFE) 

We consider the guided wave that propagates 
in a hollow cylinder. They have many practical 
applications, including the detection of corrosion in 
piping. In this study, we assume the cylinder is filled 
with water. The displacement 𝒖𝒖  in solid satisfies 
the Navier’s equation of motion; 

𝜇𝜇𝑠𝑠∇2𝒖𝒖 + (𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠)𝛁𝛁(𝛁𝛁 ∙ 𝒖𝒖) + 𝒇𝒇 = 𝜌𝜌𝑠𝑠
𝜕𝜕2𝒖𝒖
𝜕𝜕𝜕𝜕2

 (1) 

where 𝜆𝜆𝑠𝑠  and 𝜇𝜇𝑠𝑠  are Lame constants, 𝜌𝜌𝑠𝑠  is the 
density, and 𝒇𝒇 is the body force. Also, the pressure 
𝑝𝑝 in water can be obtained by solving the following 
wave equation; 

∇2𝑝𝑝 + 𝑓𝑓 =
𝜌𝜌𝑓𝑓
𝜆𝜆𝑓𝑓
𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

 (2) 

where 𝜆𝜆𝑓𝑓 is the bulk modulus of the fluid and 𝜌𝜌𝑓𝑓 

is the density. The above equations are solved in 
cylindrical coordinate (𝑟𝑟,𝜃𝜃, 𝑧𝑧).  Here we adopt an 
exact analytical solution 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  in the circumferential 
direction. Therefore exact analytical solutions are 
used in both the 𝜃𝜃  and 𝑧𝑧  directions. Here, the 
displacement and pressure can be represented by[3]  

𝑝𝑝(𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝜕𝜕) = 𝑝𝑝(𝑟𝑟)𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 , 
𝒖𝒖(𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝜕𝜕) = 𝒖𝒖(𝑟𝑟)𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 , 

(2) 

where 𝑘𝑘 ∈ ℂ  and 𝜔𝜔 ∈ ℝ  are wavenumber in the 
wave-propagation direction ( 𝑧𝑧  direction) and 
circular frequency, respectively. 

In the SAFE, the displacement and pressure 
are discretized into N-nodes along the 𝑟𝑟 direction. 
A system of equations of the conventional SAFE is 
written in the harmonic wavefield as follows [3]: 

where 𝐊𝐊1,𝐊𝐊2 ∈ ℂ𝑁𝑁×𝑁𝑁 , 𝐊𝐊3,𝐌𝐌 ∈ ℝ𝑁𝑁×𝑁𝑁 , and 𝐐𝐐 ∈
ℂ𝑁𝑁. The relation between 𝑘𝑘 and 𝜔𝜔 satisfying Eq. 
(3) indicates the existence condition of a guided 
wave. In the conventional method, Eq. (3) is solved 
as a generalized eigenvalue problem for eigenpair 
(𝑘𝑘,𝐐𝐐) with sweeping 𝜔𝜔. 
 
2.2 Numrical contenuous method (NCM) 

In this study, we track the solution of Eq. (3) 
using NCM [2], which can continuously track the 
solution of a nonlinear equation varying a parameter. 
However, there are two following problems: 𝐐𝐐 
corresponds to an eigenvector, and its amplitude and 
argument of complex are indeterminate. Both real- 
and complex-valued variables are mixed in Eq. (3). 
To overcome these problems, we separate all 
complex-valued variables in Eq. (3) into real and 
imaginary parts and add constraint conditions for  
amplitude and argument of the complex of 𝐐𝐐 . We 
can write the final form of a system of nonlinear 
equations as follows: 

[𝐊𝐊1 + 𝑖𝑖𝑘𝑘𝐊𝐊2 + 𝑘𝑘2𝐊𝐊3 − 𝜔𝜔2𝐌𝐌]𝐐𝐐 = 0, (3) 
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= 𝟎𝟎, (4) 

𝒗𝒗 = {ℜ[𝐐𝐐],ℑ[𝐐𝐐],ℜ[𝑘𝑘],ℑ[𝑘𝑘],𝜔𝜔}, (5)                                             
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where ℜ[ ]  and ℑ[ ]  indicate real and imaginary 
parts, respectively, and matrices 𝐀𝐀  and 𝐁𝐁  are 
given by 

Equation (4) are composed of 2𝑁𝑁 + 2  equations, 
and 𝒗𝒗  is the (2𝑁𝑁 + 3) -dimensional vector. Thus, 
Eq. (4) and 𝒗𝒗 can be regarded as a curve equation 
and position vector in ℝ2𝑁𝑁+3, respectively. In this 
study, we use the predictor-corrector algorithm [2] to 
track 𝒗𝒗 in Eq. (4). 

 
3. Numerical Result 

We consider an aluminum (longitudinal wave 
velocity cL: 6300 m/s, transverse wave velocity cT: 
3100 m/s, and density: 2750kg/m3) as the target 
material. The cross-section of the target is an annular 
shape. The inner and outer diameters of the pipe are 2a 
and 4a, respectively. The aluminum pipe is filled with 
water (longitudinal wave velocity: 1480 m/s and 
density 1000 kg/m3). The displacement and stress in 
the 𝑟𝑟  direction are continuous at the interface 
between the aluminum and water. However, the 
stress in the 𝜃𝜃 direction is zero at the interface. 

The dispersion relation in the case of n = 0 in 
Eq. (2) is calculated by the continuous mode tracking 
method. We started with determining each 
propagation mode's frequency / Ta cω  , which 
corresponds to the cut-off wavenumber ak0. Here we 
set ak0 was 0.01. Figure 1(a) and (b) show the 
frequency – wavenumber curves and group velocity, 
respectively. A total of 17 modes were obtained in 
the frequency range (0 / 10)Ta cω< <  . Because of 
the solid-liquid coupling, the dispersion curves are 
complicated. As can be seen, all guided wave modes 
were effectively sorted and separated by the 
continuous mode tracking method. The decoupling 
modes labeled as ① , ② , and ③  in Fig.1 are 
corresponding to SH0, SH1, and SH2 modes, 
respectively. These decoupling modes can propagate 
only in the aluminum and do not be affected by the 
influence of water. On the other hand, the mode 
labeled as ④ is corresponding to the longitudinal 
mode and propagates almost only in water. 
 
4. Summary 

The semi-analytical finite element method 
(SAFE) is a useful tool to calculate the ultrasonic 
propagation mode in an elongated material with an 
arbitrary cross-section. Although the SAFE obtains 
the dispersion relation of the propagation mode by 
sweeping the frequency step by step, it was not easy 
to evaluate the continuity of a mode. This study 
proposed a mode tracking method that contributes to 

classifying propagation modes by combining the 
numerical continuation method (NCM) with the 
SAFE. The efficiency of the proposed method was 
verified using a water-filled pipe model. We will 
show the experimental validation on the conference 
day. 
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(6) 

  
Fig. 1 (a) Frequency – wavenumber curves for an 
aluminum pipe filled with water. The inner and outer 
diameters of the pipe are 2a and 4a, respectively. (b) 
Group velocity dispersion curve. 
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