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1. Introduction 

Cancer treatment by High-Intensity Focused 
Ultrasound (HIFU) [1] is a low invasive method 
utilizing a thermal coagulation of tumor tissues. A 
Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation 
[2] describing weakly nonlinear (i.e., finite but small 
amplitude) propagation of focused ultrasound in a 
single-phase liquid has been used as a physico-
mathematical model for HIFU treatment. 

Recently, it is reported that the utilization of 
microbubbles as an enhancer drastically improves 
the heating effects of HIFU [3]. Kanagawa et al. [2] 
has extended the KZK equation for single-phase 
liquid into that for bubbly liquid. In our previous 
work [4], thermal conduction at gas-liquid interface 
is introduced by utilizing the energy equation [5] for 
gas inside bubble and we then found that the thermal 
conduction strongly contributes the dissipation effect. 
However, the phase difference between the 
temperature gradient at gas-liquid interface and the 
average temperature of gas inside bubble [6] is 
neglected. Since temperature of the tumor may rise 
over 80 degrees in HIFU treatment [1], detailed 
description of these thermal effects is strongly 
desired for such an application.  

In this study, a KZK equation is re-derived by 
incorporating the phase difference between the 
temperature gradient at gas-liquid interface and the 
average temperature [6].  

 

2. Problem statement 

Long-range propagation of ultrasound 
radiated from circular sound source placed in an 
initially quiescent liquid non-uniformly containing 
many spherical microbubbles is theoretically 
investigated (Fig. 1). The main assumptions are 
summarized as follows: (i) Incident frequency of 
ultrasound is quite lower than eigenfrequency of 
bubble oscillations; (ii) Wavelength is quite longer 
than the bubble radius; (iii) Diameter of circular 

sound source is sufficiently longer than the 
wavelength, and this leads to the assumption that 
wavefront is quasi-planar [2, 4]; (iv) Gas inside 
bubbles is only composed of non-condensable gas, 
hence the phase change across gas-liquid interface 
does not occur. 

 

3. Basic equations 

The energy equation for single-bubble 
describing thermal conduction at the bubble-liquid 
interface is used [5]: 
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where 𝑡∗  is the time, 𝑝∗  pressure, 𝑅∗  bubble 

radius, 𝜅 ratio of specific heats of gas, 𝜆∗ thermal 

conductivity of gas, 𝑇∗  temperature; the subscript 

G denotes volume-averaged variables in gas phases, 

subscript 0 does the quantities in the initial uniform 

state at rest, and superscript * does a dimensional 

quantity. Temperature gradient 𝜕𝑇G
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Eq. (1) is rewritten by the following model 

considering the phase difference between the 

temperature gradient at gas-liquid interface and the 

average temperature of gas inside bubble [6]: 
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where �̃�P
∗   is the complex number having the 

dimension of length [6] and 𝜔B
∗  eigenfrequency of 

bubble oscillation. Furthermore, the conservation 

laws of mas and momentum for bubbly liquids based 

 
Fig. 1  Schematic of the model. 
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of two fluid-model [7], the momentum conservation 

for a spherical symmetric oscillating bubble in a 

compressible liquid, Tait equation of state for liquid, 

equation of state for ideal gas inside bubble, 

conservation equation of mass inside bubble, and 

balance of normal stresses at the bubble-liquid 

interface are also introduced (see the explicit forms 

in Refs. [2, 4]). 
 

4. Results 

All the dependent variables are expanded in 

power series, e.g., the expansion of 𝑇G
∗ is 
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∗ = 1 + 𝜖𝑇G1 + 𝜖2𝑇G2 + ⋯, (3) 

 

where 𝜖 (≪ 1)  is a typical nondimensional (finite 
but small) amplitude of the ultrasound. As in the 
same manners of Refs. [2, 4], we can derive the KZK 
equation in terms of temperature 𝑇G1: 
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via a variables transform as retarded time expression, 
  

𝜏 = 𝑡 − (1 + 𝛱0)𝑥, 𝜉 = 𝜖𝑥, 𝜁 = √𝜖𝛤𝑟, (5) 
  

where 𝛤  is the quantity of 𝑂(1)  representing the 
size of focusing of ultrasound. The right-hand side of 
Eq. (4) represents the focusing along the radial 
direction. The term with coefficient 𝛱0 , 𝛱1  and 
𝛱3  represent the advection, nonlinearity and 
dispersion effects, respectively, both 𝛱21 and 𝛱22 
the dissipation effects. Advection coefficient 𝛱0 
and dissipation coefficient 𝛱22 are 
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where 𝐿∗ , 𝑈∗ , 𝜔∗  are typical wavelength, wave 

speed, incident frequency of the ultrasound, 𝛼 void 

fraction, 𝑐L0
∗  wave speed in pure water, 𝛾e and 𝜇e

∗ 

are effective polytropic exponent and viscosity [6]. 

The last term of advection coefficient 𝛱0 (Eq. (6)) 

arises from the imaginary part of Eq. (2), hence the 

phase difference between the temperature gradient 

and the average temperature affects the advection 

effect.  

Dissipation coefficient 𝛱22  arises from the 

thermal conduction at gas-liquid interface (the real 

part of Eq. (2)). Fig. 2 shows the dependence of 𝛱22 

on 𝛼0 in our previous study [4] and present study, 

and then we found that thermal conduction more 

strongly affects the dissipation effect in this study. 
 

5. Summary 

We have derived a KZK equation for a 

nonlinear propagation of focused ultrasound in 

bubbly liquids incorporating the thermal conduction 

at the gas-liquid interface by Eq. (1). Temperature 

gradient term in Eq. (1) is rewritten by Eq. (2) 

considering the phase difference between the 

temperature gradient at gas-liquid interface and the 

average temperature of gas inside bubble. As a result, 

the phase difference affects the advection effect and 

the thermal conduction more strongly affects the 

dissipation effect than in our previous work [3]. 
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Fig. 2  Dissipation coefficient 𝛱22  versus the 

initial void fraction 𝛼0 for the normal condition 

of air–water system in our previous study [4] and 

present study. 
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