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1. Introduction 

In recent years, the aging of infrastructure 
facilities such as bridges built during the period of 
rapid economic growth has become a serious 
problem. In this paper, we propose a structural 
health monitoring system using surface acoustic 
wave (SAW) sensors. Impedance-loaded passive 
SAW sensors have the advantage that they can be 
used wirelessly and without power supply when 
combined with impedance-changing sensors. At 
present, we are mainly investigating the method of 
evaluating the health of bridges. 

In our previous research1, we conducted 
experiments on cantilevered beams made of 
polyethylene terephthalate (PET) resin, which 
simulate bridges. However, since a cantilever beam 
made of PET resin is insufficient to simulate a 
bridge, in this study, a fixed beam made of an 
aluminum alloy (A5052) plate at both ends was 
used to simulate a bridge. In addition, unsupervised 
machine learning k-means clustering and One-Class 
Support Vector Machine (OCSVM), which is one of 
the anomaly detection methods, were used for 
damage discrimination. 
 

2. Experimental method 

The experimental system used in this study is 

shown in Fig. 1, where the frequency of the SAW 

device is 13.5 MHz and the IDT is fabricated on 

128°YX-LiNbO3. A variable-capacitance diode and 

a vibration energy harvester were connected to the 

IDT reflector as an impedance-changing sensor. The 

vibration energy harvester converts the acceleration 

of the beam into a voltage change, and the 

variable-capacitance diode converts the voltage 

change into a capacitance change. This is how the 

system detects the vibration of the beam. In the 

vibration experiment, the oscilloscope was used to 

measure for one second. A vibration exciter was 

used to excite the beam at 20 Hz for about 0.3 

seconds, and then the vibration exciter was stopped 

to measure the damping. The dimensions of the 

beams are shown in Fig. 2. 10 measurements were 

carried out at each of the three points shown in Fig. 

2. Two holes with a diameter of 20 mm were made 

in the beam to simulate damage, and the presence 

or absence of the holes was used to detect damage. 

The measured vibration data were then subjected 

to continuous wavelet transform (CWT) to obtain 

both time and frequency information. The detailed 

explanation of CWT is omitted because it is the 

same as in the previous study1.  

In addition, the data at each frequency of CWT is 

approximated using the exponential function, 

y = A exp (- α x) (1) 

Here, α is the attenuation coefficient and A is the 

amplitude. Based on the attenuation coefficient, a 

database for machine learning was developed. 

 

 
Fig. 1 Experimental system 

 
Fig. 2 Beam dimensions 

 

3. Classification by Unsupervised Machine 

Learning  

In this study, we used k-means clustering, 

a typical unsupervised machine learning method, 

and OCSVM, a well-known anomaly detection 

method, to classify the presence of damage. The 

machine learning was implemented using                                             
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scikit-learn2, an open-source Python library. To 

classify the data, we normalized the dataset by 

columns. When the array of data is ai, the 

normalized data ai,Normalization is as follows. 

 

(2) 

The results of k-means clustering were evaluated 

using the ARI (Adjusted Rand Index), which 

indicates that the clustering is random when it is 

close to 0 and accurate when it is close to 1. On the 

other hand, the results of OCSVM were evaluated 

by ACC (Accuracy), which indicates the number of 

correct answers. Figures 3 and 4 show the results of 

k-means and OCSVM with the data normalized by 

columns according to Eq. (2), summarized in a 

stacked bar. 

For the k-means clustering, ARI = 0.93, 

indicating high accuracy. From these results, we 

confirmed that it is possible to discriminate damage 

with and without holes using unsupervised machine 

learning. However, if there is a bias in the number 

of data with and without holes, the accuracy may 

deteriorate drastically. Figure 5 shows the 

clustering result when the number of data with 

holes is small, ARI = 0.31, which is much worse. 

This may be due to the fact that the center of 

gravity between the data, which is the criterion for 

determining the similarity of the data, may no 

longer function due to the bias in the data. This 

problem is unavoidable because clustering 

determines clusters based on the center of gravity of 

the data. Even if we consider implementing it in a 

real environment, it is hard to imagine that both 

data with and without defects will be equal. 

Therefore, we believe that k-means clustering is not 

suitable for health monitoring in a real 

environment. 

OCSVM was also able to achieve high 

accuracy with ACC = 96 %. The results in Figure 4 

show that the data without holes can be classified as 

normal data and the data with holes can be 

classified as outliers. In addition, unlike k-means 

clustering, OCSVM can be trained using only the 

without hole data, so it does not need to take into 

account the bias of the data. Therefore, it is suitable 

for health monitoring systems. 

 

 
Fig. 3 k-means clustering (ARI = 0.93) 

 
Fig.4 OCSVM (ACC = 96 %) 

 
Fig. 5 k-means clustering when there are few data 

with hole (ARI = 0.31) 

 

4. Conclusion 

Damage assessment of fixed beams at 
both ends for bridge health monitoring using 
impedance-loaded SAW sensors was conducted. 
The results of this study showed that classification 
by unsupervised machine learning is possible. In 
particular, we showed that OCSVM is suitable for 
bridge health monitoring. In the future, we aim to 
increase the number of defect types and classify 
various types of defects, and to conduct 
demonstration experiments in real environments. 
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