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1. Introduction 

Ultrasound imaging is widely used in the 
medical field because it is noninvasive and can be 
imaged in real time. Typical method of 
beamforming for generating an ultrasonic image is 
a delay-and-sum (DAS) beamformer that corrects 
the delay time due to the difference in the 
propagation path of the echo received by each 
tansdiucer and adds them together. Nowadays, 
minimum variance (MV) beamformer is often used 
to determine the DAS weights so that the variance 
of beamforming result is minimized. Compared to 
the DAS beamformer, the image quality of the MV 
beamformer can be improved, but it has a problem 
that the calculation amount is large and it takes time 
to find the optimum weight for each pixel. 

We proposed a high-resolution ultrasound 
imaging method called FPWC-MVDR (frequency 
and plane-wave compounding-minimum variance 
distortionless response) using an adaptive 
compound of ultrasound transmission angle and 
subbands [1]. Like the MV beamformer, 
FPWC-MVDR is a method that determines the 
weight for each pixel, so that the amount of 
calculation is large and real-time processing is 
difficult. Therefore, this study aims to generate 
images in a short time using deep learning. The 
result of FPWC-MVDR is used as an annotation for 
deep learning. Two networks, one that learns the 
weight calculation of each pixel and the other that 
directly learns beamforming, are constructed and 
compared. 
 

2. Method 

2.1 FPWC-MVDR 

The narrowband chirp signal is transmitted 
multiple times with the center frequency randomly 
changed for each transmission angle, and the 
received echo is delayed by an appropriate time. 
The subband variance-covariance matrix is 
estimated for each pixel, and then the weight of the 
subband compound is determined by the minimum 
variance criterion. The weight is used to reduce the 
frequency component for each transmission angle, 
and then the angular variance-covariance matrix is  

 

2.2 Simulation 

In this experiment, the transmit and receive 
sequences used the experimental platform for 
medical ultrasound equipment (Microsonic 
RSYS0003) at a sampling rate of 31.25 MHz.  The 
transducer in this experiment has 64 elements and 
an element pitch of 0.315 mm. A linear array probe 
(Nihon Dempa Kogyo T0-1599) was also used. The 
center frequency of this probe is 7.5MHz and the 
specific bandwidth is 70%. Signal processing was 
performed offline using MATLAB software. 

Figure 1 shows the experimental setting. We 
present the experimental results obtained using a 
soft tissue-mimicking phantom (Kyoto Kagaku 
US-2 multi-purpose phantom N-365), with a speed 
of sound of 1432 ms−1 (25 °C) and attenuation of 
0.59 dB cm−1 MHz−1. The phantom contains six 
string wires with the same diameter of 0.1 mm and 
the distances between these wires are 1.0, 2.0, 3.0, 
4.0 and 5.0 mm as measured from the side closest 
to the phantom. 

 

3. Network Architecture 

The networks used in this study were 
implemented in Python using the Keras API with a 
tensorflow (Google , CA, USE) backend. For  the 
annotation data, the value of 3300 pixels as a result 
of FPWC-MVDR shown in Figure 2 was used. For 
weight learning, 264 values per pixel (product of 33 
angles and 8 sub-bands) were used, and 
Beamforming learning used one value per pixel. 
Both are results for RF signals. 

Based on [2], in weight learning, the fully 
connected layers that outputs N nodes and N / 4 

 

 
 

Fig. 1 Experimental setting model. 



nodes are used and in beamforming learning, it adds 
a layer that outputs 1 node at last. The overview of 
each network is shown in Figure 3. To prevent 
network overfitting, a dropout layer is applied 
between each fully connected layer with a 
probability of 0.2. Training optimization uses the 
Adam optimizer with a learning rate of 0.001. 

In deep learning, the output value can be 
limited by using various activation functions. The 
ReLU function that outputs 0 when the input value 
is 0 or less and outputs the input value as it is when 
it is positive value is often used in the field of deep 
learning. Since the gradient disappearance may 
occur when the ReLU is used, an activation 
function called an anti-rectification layer, which is a 
combination of the ReLU and L2 normalization, is 
used in this study. By combining the ReLU with the 
normalization term, gradient disappearance can be 
prevented and overfitting of the constructed model 
can be suppressed. 

During learning, a loss function is used to 
reduce the error between the predicted value and 
the correct value. The loss function is a function 
used to improve the prediction accuracy, and the 
network parameters are updated to minimize the 
loss function. In this study, the parameters are 
updated using the mean-squared-error (MSE), 
which is a typical loss function. In weight learning, 
a function that brings the sum of weights closer to 1 
is combined with MSE. 
 

4. Result and Conclusion 

We output an image using the data used for 
training and check whether the network is training. 
The output results are shown in Figure 4 and the 
prpfiles are shown in Figure 5. Table 1 shows the 
average value of the full width at half maximum 
values. From these, it can be confirmed that the 
network can be learned, and that the beamforming 
learning has a narrower half-value width than the 
weight learning, and the image is clear. In terms of 
time, it took about 15038 seconds to create an 
image of FPWC-MVDR, about 142 seconds to 
learn weights, and about 166 seconds to learn 
brightness. This time, the learning time was short 
because the amount of data was small, but the 
weight learning was even shorter. 

 

 
In the future, we will increase the amount of 

data to improve the accuracy of the networks and 
confirm the versatility of the network by using the 
data not used for learning. 
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Table. 1 The average of the full width at half 

maximum values of FPWC-MVDR, output of 

weight learning, beamforming learning 

 
FPWC brightness weight

range 0.173 0.21 0.378

lateral 0.205 0.22 0.214  

 
Fig. 2 B-mode images of the result of 

FPWC-MVDR.  

(a)  (b)  

(c)  (d)  

 

Fig. 5 Amplitude distribution profiles: (a) range 

direction of Fig. 4 (a); (b) lateral direction of Fig. 

4 (a); (c) range direction of Fig. 4 (b); (d) lateral 

direction of Fig. 4 (b). 

(a)  (b)  

Fig. 4 B-mode images: (a)outputs of weight 

learning; (b) outputs of beamforming learning. 

(a)  (b)  
 

Fig. 3 The overview of network model: (a) weight 

learning; (b) beamforming learning. 
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