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1. Introduction 

Image resolution is drastically improved when 

microbubbles are used as a contrast agent in 

ultrasound diagnosis. The contrast bubbles are 

covered with a thin shell (or membrane) composed 

of lipids and other substances. Church [1] and Hoff 

et al. [2] proposed mathematical models from a 

mechanical point of view, assuming the shell to be a 

visco-elastic body (i.e., continuum), and established 

a pioneering theory of nonlinear oscillations of  

ultrasound contrast agent. However, as a critical 

disadvantage of previous models including Refs. 

[1,2], only single contrast agent is considered. The 

acoustic properties of multiple contrast agents are 

necessary because the large number of contrast agent 

are utilized in a clinical practice. Recently, our group 

proposed a mathematical model [3] that can 

represent the nonlinear acoustic properties of a large 

number of contrast agents based on mathematical 

model for a single contrast agent [1,2]. 

In general, the shell is composed of various 

materials such as polymers and phospholipids, which 

are distributed in a layered, an anisotropy thus 

naturally occurs and contributes to acoustic 

properties of bubble oscillation and ultrasound. 
However, all previous models (e.g., Refs. [1-3]) have 

assumed shell as isotropic material for simplicity. 
Last year, up-date equation of motion describing the 

oscillation of a single bubble with shell anisotropy is 

proposed, and the contribution of shell anisotropy to 

the oscillations was pointed out [6].  

The purpose of this study is to extend the 

equation of motion for a single contrast agent 

incorporating shell anisotropy [6] to the case of 

multiple contrast agents and to clarify how shell 

anisotropy affects the ultrasound propagation. 

2. Problem statement  

The bubble is encapsulated by a visco-elastic 

shell, assumed to be a Kelvin-Voigt model. An 

anisotropy of the shell [6], which has been ignored 

for 25 years in previous studies, is newly 

incorporated. As shown in Fig. 1, the material 

properties are assumed to be different in the radial 

and orthoradial directions, which is weak assumption 

compared with the most general anisotropic case. 

We theoretically investigate the nonlinear 

propagation properties of ultrasound in a liquid 

containing a large number of bubbles encapsulated 

by the anisotropic visco-elastic shell. Initially, the 

bubbly liquid is at rest and the bubbles are uniformly 

distributed. The gas inside bubbles is composed of 

only non-condensable ideal gas, and phase change is 

not assumed to occur at the bubble-liquid interface. 
The bubbles do not coalesce, break up, appear, and 

extinct. Thermal conduction is dismissed for 

simplicity, because it is not expected to have much 

influence on ultrasound diagnosis. 

3. Basic equations 

The equation of motion for a bubble 

encapsulated by an anisotropic shell [6] is used: 
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where 𝑡∗  is the time, 𝑝∗  pressure, 𝑅∗  bubble 
radius,  𝜌∗  density, 𝑑0

∗  initial shell thickness, 𝑈∗ 

typical propagation speed of the wave, 𝜇∗ viscosity, 

𝜎1
∗ and 𝜎2

∗ are surface tensions at the internal and 

 
Fig. 1: Schematic illustration of anisotropy of shell 

encapsulating bubble [5]. 



external boundaries of the shell, respectively; the 

subscripts G and L denote volume-averaged 

variables in gas and liquid phases, respectively, the 

subscript 0 denotes the quantities in the initial 

uniform state at rest, and the superscript * denotes a 

dimensional quantity. Here, anisotropic dissipation 

factor 𝐶ani  and anisotropic elastic constant 𝐾ani 

are constants determined from the viscosity and the 

elastic constants of the shell, respectively; 𝐾ani  is 

given by 
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where 𝐸𝑟
∗  is the Young modulus in the radial 

direction, 𝜈𝜃𝑟
∗   the Poisson ratio with radial load, 

and 𝐸||
∗  and 𝜈|| 

∗  are the Young modulus and the 

Poisson ratio in the orthoradial plane, respectively. 

Furthermore, to close the set of equations, the 

conservation equations of mass and momentum for 

bubbly liquid based on two fluid-model [3,4] are 

used:  
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where 𝛼  is the volume fraction of gas phase, 𝑥∗ 

space coordinate, 𝑢  fluid velocity, 𝑃∗  surface-

averaged pressure, and 𝐹∗  interfacial momentum 

transport [3,4]. 

 

4. Results 

We successfully derived the KdV-Burgers 

equation including the effect of shell anisotropy in 

terms of the variation of bubble radius 𝑅1:  
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where 𝜏  and 𝜁  are independent variables through 

the variable transformation, and 𝜖  is the 

nondimensional wave amplitude. Here, coefficient 

of dissipation term is given by 

Π2 =  −
1

6𝛼0
(

𝑈∗2𝑅0
∗3

𝜔B
∗ 2

𝑐L0
∗ 𝜖𝐿∗4 +

4𝜇L
∗

𝑈∗2𝜌L0
∗ 𝑇∗

+ 𝐶ani

−
8𝜎1

∗

(𝑅0
∗ − 𝑑0

∗)𝑈∗2𝜌L0
∗

 ), 

where L* is a typical wavelength, 𝑐L0
∗  the speed of 

sound in the liquid, 𝜔B
∗   an eigenfrequency of the 

encapsulated bubble, and 𝑇∗ a typical period of the 

wave concerned. Further, Π2  contains 𝐶ani  and is 

affected by the elastic modulus of the shell 

anisotropy, and 𝐾ani  affects Π1 . Since explicit 

forms of 𝐶ani  and nonlinear term coefficient Π1 

are quite complex, it is not shown here. The explicit 

form of advection term coefficient Π0  and 

dispersion term coefficient Π3  are the same as 

counterparts in Ref. [4], but are affected by 𝐾ani. 

 

5. Summary 

The equation of motion for a single bubble 

encapsulated by a visco-elastic shell with an 

anisotropy [6] was extended to the case of multiple 

bubbles, and we have derived the equation for a 

nonlinear propagation of ultrasound in liquid 

containing multiple encapsulated bubbles. As a 

result, shell anisotropy contributed to advection, 

nonlinear dispersion, and dissipation effects;  

especially, large contribution of dissipation was  

predicted. A quantitative discussion will be presented 

in a presentation. 
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