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1.Introduction 

Noncontact measurement of the ultrasonic 
waves using the transmission and reception of laser 
beam is being introduced in recent nondestructive 
testing. The ultrasonic wave generated by laser 
irradiation is called the photoacoustic wave. This is 
due to the rapid rise of the thermal stress by the 
laser irradiation, and then the stress wave generates 
and propagates into the material’s interior. The 
theoretical research and experiment of the 
photoacoustic effect were conducted intensively in 
the ’80s, and the results were summarized by 
Scruby and Drain1). Not material parameters related 
to acoustic, optic, and thermal phenomena, but also 
spacial and time conditions of the laser irradiation 
affect the generation of the photoacoustic wave2). 
Therefore, an appropriate design and preparation 
are required for reliable laser ultrasonic testing.  

Numerical simulation can be an effective tool 
for predicting photoacoustic signals. This study 
aims to develop a numerical model to simulate 
photoacoustic wave generation and propagation. 
Here, the heat conduction and the elastic wave 
problems are solved in a coupled manner based on a 
discretization by the finite integration method3) 
(FIT). In this study, FIT simulations for wavefields 
with a fluid-solid interface are dealt with, and the 
accuracy of the method is validated by experimental 
measurement. 

 
2. Finite Integration Technique 

The target area is assumed to be linear elastic 
solid[s] that satisfy the small-deformation theory. 
Here, a two-dimensional wave field is considered 
using the Cartesian coordinates (x1, x2). The 
governing equations of the photoacoustic wave 
consist of the Cauchy equation of motion and the 
Duhamel-Neumann's relation2). These equations are 
given in integral form for a finite volume V with 
surface S by   

 =d djV Si ijv V n Sρ σ∫ ∫   (1) 

and the Duhamel-Neumann's relation: 
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In Eq.(1), v(x,t) is the particle velocity vector, σ(x,t) 
is the stress tensor of second-rank, ρ(x) is the 
density, and n(x) is the outward normal vector on 
the surface S. In Eq.(2), T(x,t) is the temperature, 
λ(x) and µ(x) are the Lame constants, α(x) is the 
linear expansion coefficient, and δ is the Kronecker 
delta tensor. In Eqs.(1) and (2), the dot means the 
derivative in terms of time as /T T t= ∂ ∂ , and the 
summation convention is used.  

When modeling the fluid[f], the shear stress 
σ12(x,t) = 0. By setting µ(x) = 0, we can use a 
unified grid in both fluid and solid. For the 
fluid-solid interface, it is essential to satisfy the 
following continuity conditions 

 [f ] [s]( , ) ( , )i iv t v t=x x  (3) 

 [f ] [s]( , ) ( , ) 0ij ijt tσ σ= =x x . (4) 
On the other hand, the heat flux q(x,t) and the 

temperature T(x,t) are satisfied by the following the 
Fourier’s law of heat condition: 
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where k is the thermal conductivity. The equation of 
heat conduction is expressed using the heat flux as 
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where c is the specific heat at constant volume. 
 According to these equations, we perform 

integration over a cubic voxel V whose surface is S, 
assuming that v, σ, q, and T are constant within V 
and on S. Here, pixels with a uniform size are used 
for parallel computation. The length of each side in 
V is ∆x. This method results in staggered grids and 

 

Fig. 1 Finite volume V and the allocation of 
physical quantities in the 2D FIT. 
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provides a very stable code, allowing easy and 
flexible treatment of fluid-solid interfacial 
conditions. The spatial grid of the 2D FIT code is 
shown in Fig. 1.  

In the time domain, the stress components 
(σ) are allocated at half-time steps, while the 
velocities (v) and the temperature (T) are allocated 
at full-time steps. The following time discretization 
yields an explicit leap-frog scheme: 
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where ∆t is the time interval, and the superscript z 
denotes the integer of the time step. The FIT repeats 
the operations in Eqs.(8),(9), and (10) from z = 1 to 
K under suitable initial and boundary conditions. A 
specific stability condition3) (the Courant Friedrichs 
Lewy condition) and adequate spatial resolution are 
required to calculate the FIT accurately.   
 
3. Numerical Examples  

Simulations of the photoacoustic wave 
generation and propagation are conducted using 
two models. One is a solid model (Model A) that 
consists of aluminum. The other is a two-phase 
model (Model B) composed of water and aluminum. 
These material parameters are listed in Table 1. 
Since the photoacoustic effect produced by the 
absorption of laser is assumed to be prominent on 
the aluminum surface, we fed the heat flux q2 on the 
grids equivalent to the laser spot on the aluminum 
surface. In the simulation, we set the pulse duration 
to 7 ns and the laser spot radius to 0.428 mm. The 
calculation area in Model A is 4mm x 5mm. The 
pixel size and time incremental in the FIT are 0.5 
µm and 0.05 ns, respectively.  

The vonMises stresses at 160 ns and 480 ns 
after the laser irradiation are plotted in Fig.2. The 
magnitude of the stress was normalized by the 
maximum value for all the time steps in the 
simulation. From Fig.2, the magnitude of the 
longitudinal (L) wave is smaller than the shear (S) 
wave. On the other hand, the high intensity of the L 
wave was observed in Model B (Fig.3). By the 
existence of water, the interface of Model B is 

subjected to the reaction force in the x2 direction. 
Therefore, the amplitude of the normal stress at the 
interface became large.  
 
4. Summary 

 To better understand photoacoustic wave 
generation and propagation, a numerical simulation 
method using the discretization of the finite 
integration technique was proposed. The simulation 
result showed the photoacoustic wave with large 
amplitude was observed in the case of the laser 
irradiation through the water. The experimental 
results will be shown on the day of the conference. 
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Table.1 Material properties of aluminum and water. 

 

 
Fig.2 Snapshots of photoacoustic wave propagation in 
Model A in the case that laser is illuminated on the 
aluminum surface. 

 
Fig.3 Snapshots of photoacoustic wave propagation in 
Model B in the case that laser is illuminated on the 
aluminum surface through the water. 
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