Dielectric properties of multi-layer graphene on LiNbO₃ crystal

Shota Tsuru^{1†}, Yusuke Yamato², Yosuke Nisimura³, Yuki Takemoto⁴, and Yong Sun⁵ (^{1.2.3.4.5}Grad. School Eng., Kyushu Institute of Technology.)

1. Introduction

The band structure of multi-layer graphene depends on the number of its layers. Single-layer graphene has a band gap of zero, but as the number of layers increases, the band gap is formed. It has also been noted that electrical and mechanical properties of the multi-layer graphene, which was prepared on a substrate, are strongly influenced by the substrate.¹⁻³⁾

In this study, we studied dielectric properties of the multi-layer graphene/LiNbO₃ structure applied to piezoelectric devices, especially evaluating effects of the LiNbO₃ substrate to dielectric properties of the graphene thin films.

2. Experimental

A 5-layer graphene/LiNbO₃ sample was prepared by transferring CVD monolayer graphene onto the optically polished LiNbO₃ substrate five times. In

Fig. 1 Structures of Au/5-layer graphene/ LiNbO₃/Au and Au/LiNbO₃/Au samples

Fig. 2 Equivalent circuits of (a) Au/5-layer graphene/LiNbO₃/Au sample and (b) 5-layer graphene and LiNbO₃

addition, the Au films were prepared on both sides of the sample, and was cut out with area $S = 2.8 \times$

3.1mm². The structure of the samples used in this study is shown in Fig. 1. Two types of samples were prepared: Au/5-layer graphene/LiNbO₃/Au and Au/LiNbO₃/Au. The samples were placed in a vacuum chamber and their capacitance and resistance were measured using an impedance analyzer. In the measurements, frequency was varied from 4 Hz to 5 MHz, and AC amplitude was fixed at 1.0 V.

3. Results

In general, a sample sandwiched between two electrodes can be regarded as a parallel circuit of capacitance and resistance. The equivalent circuits of the composite 5-layer graphene film/LiNbO₃, 5layer graphene film alone and LiNbO₃ substrate alone are shown in Fig. 2. The capacitance Cp₅ and resistance Rp₅ of the composite sample, the capacitance C₅ and resistance R₅ of the 5-layer graphene thin film alone, and the capacitance Cp₀ and resistance Rp₀ of the LiNbO₃ substrate alone are also shown in the figure, respectively. In this study, the C₅ and R₅ are obtained by measuring Cp₅, Rp₅, Cp₀ and Rp₀.

The C_5 and R_5 can also be obtained from four measurement parameters of Cp_5 , Rp_5 , Cp_0 and Rp_0 from theoretical calculations as follows.

$$R_{5} = a - \frac{R_{p0}}{l} - \frac{\left(\omega C_{p0} R_{p0}^{2} - bl\right)^{2}}{l(R_{p0} - al)}$$
$$C_{5} = \frac{l(bl - \omega C_{p0} R_{p0}^{2})}{\omega \left\{ \left(al - R_{p0}\right)^{2} + \left(\omega C_{p0} R_{p0}^{2} - bl\right)^{2} \right\}}$$

$$l = 1 + (\omega C_{p0} R_{p0})^2 \qquad a = \frac{R_{p5}}{1 + (\omega C_{p5} R_{p5})^2} \qquad b = \frac{\omega C_{p5} R_{p5}^2}{1 + (\omega C_{p5} R_{p5})^2}$$

The absolute values of C_5 and R_5 are shown in Fig. 3 as a function of frequency. As can be seen from this figure, the resistance of the 5-layer graphene thin film decreases by seven orders of magnitude with increasing frequency, while its capacitance is almost

constant at about 10 pF. Incidentally, the minimum measurement capacitance of the instrument is 1 pF.

Fig. 3 Frequency dependences of C₅ and R₅

Fig. 4 Frequency dependences of ε_5 and $\Delta \varepsilon_5$

Fig. 5 Frequency dependences of ρ_5 and $\Delta \rho_5$

4. Discussion

First, the capacitance of the graphene film are almost constant with increasing frequency as shown in Fig. 3, while its resistance in direction perpendicular to the graphene planes decreases linearly. This is related to electrical properties of the graphene film sample. The capacitance value reflects polarization characteristics of graphene lattice, while the resistance depends on carrier current passing through the graphene film. The nearly constant capacitance value is due to polarizations of the 5layer graphene lattice and LiNbO₃ crystal substrate.

Second, the C₅ and R₅ are from the theoretical calculations of equivalent circuit, it is need to verify their errors from the true values. The propagation law was used to determine the errors of the calculations, the errors of R₅ and C₅, Δ C₅ and Δ R₅, can be expressed by following equations. Also, we also obtain dielectric constant and resistivity of the 5-layer graphene thin film and their errors, ε_5 , ρ_5 , $\Delta\varepsilon_5$ and $\Delta\rho_5$, from C₅, R₅, Δ C₅ and Δ R₅.

The frequency dependences of the ε_5 and $\Delta \varepsilon_5$

$$\Delta R_5 = f(R_{p5}, C_{p5}, R_{p0}, C_{p0})$$

$$\Delta C_5 = g(R_{p5}, C_{p5}, R_{p0}, C_{p0})$$

$$\Delta R_5 = \frac{\partial R_5}{\partial R_{p5}} \varDelta R_{p5} + \frac{\partial R_5}{\partial C_{p5}} \varDelta C_{p5} + \frac{\partial R_5}{\partial R_{p0}} \varDelta R_{p0} + \frac{\partial R_5}{\partial C_{p0}} \varDelta C_{p0}$$

$$\Delta C_5 = \frac{\partial C_5}{\partial R_{p5}} \varDelta R_{p5} + \frac{\partial C_5}{\partial C_{p5}} \varDelta C_{p5} + \frac{\partial C_5}{\partial R_{p0}} \varDelta R_{p0} + \frac{\partial C_5}{\partial C_{p0}} \varDelta C_{p0}$$

of the 5-layer graphene thin film are shown in Fig. 4. As seen from the figure, the error in the capacitance measurement is about 1/10 of the measurement capacitance value. On the other hand, the frequency dependences of the resistivity and its error of the 5-layer graphene thin film, ρ_5 and $\Delta \rho_5$, are shown in Fig. 5. The measurement error of the resistivity of the 5-layer graphene thin film is several times larger than its measurement value. The results suggest that there is a large error in current measurement of the 5-layer graphene film on the thicker LiNbO₃ substrates.

5. Conclusion

The dielectric properties of the 5-layer graphene/ LiNbO₃ structure were characterized by measuring its AC impedance. The capacitance was obtained by sufficient accuracy, but there is a risk of large error in its resistance measurement due to the thicker LiNbO₃ substrate.

References

- 1) Koichi Onishi, Kenta Kirimoto and Yong Sun, AIP Advances 7 (2017) 025113 (1-17).
- Yong Sun, Kenta Kirimoto, Tsuyoshi Takase, Daichi Eto, Shohei Yoshimura, Shota Tsuru, Sci. Rep. (2021) 23401(1-12).
- Kanghyun Kim, Hyung Ju Park, Byung-Chill Woo, Kook Jin Kim, Gyu Tae Kim, and Wan Soo Yun, Nano Lett. 8 (2008) 3092-3096.