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1. Introduction 

The finite-difference time-domain (FDTD) method 
has simple schemes for approximating space and 
time derivatives of fields with discretized field 
values at grid points. For analysis of elastic waves 
propagating in solids by the FDTD method, we first 
choose the grids from standard staggered grids  
(SSG),1) Lebedev grids,2) rotated staggered grids,3,4) 
or staggered grids with the collocated grid points of 
velocities (SGCV).5-7) The SGCV was developed for 
simple imposing of boundary conditions: free 
boundaries, symmetry condition, and asymmetry 
condition. Although FDTD analyses of isotropic and 
quartz Lamé resonators demonstrated the validity 
and usefulness of the SGCVs, the stability of SGCV 
models with free boundaries should be improved for 
long time simulation such as 220 ≅ 106.02 time 
steps. 

In this paper, we presented a stable SGCV 
model of free boundaries in two dimensions. Grid 
points of velocities are on the free boundaries for 
computing the integrals on control volumes for 
Newton’s equation of motion rather than inducing 
stress-free conditions on the velocity fields7) and 
unified approach to model interfaces between two, 
three, and four different media. The stability and 
validity of this model were demonstrated by 
computing resonant frequencies of a Lamé resonator 
on a quartz plate in the finite-difference frequency-
domain (FDFD) method. 

 

2. Stable SGCV Models of Free Boundaries 

Figure 1 shows two SGCV models of free 

boundaries in two dimensions (∂/ ∂𝑧 = 0) . In 

Fig.1(a), we can compute extra velocities, va’s (△), 

in the free boundaries and calculate after SGCV 

scheme in the solid.7) In Fig.1(b), we compute a 

numerical integration of Newton’s equation of 

motion by midpoint rule on the control volume (a 

rectangle with dashed lines) for velocities in the free 

boundaries: at the edge point, for example,   
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where 𝛥𝑖   (𝑖 = 𝑥, 𝑦), 𝜌, and 𝑇𝑖𝑗 (𝑖 = 𝑥, 𝑦, 𝑧, 𝑗 =

𝑥, 𝑦)  are the space interval along 𝑖 -axis, the mass 

density, and an 𝑖𝑗 -component of stress tensor. In 

addition, using linear interpolation of velocity fields 

in the control volume with vertices, P1, P2, Pve, and 

P3, we can compute the time derivative of Hooke’s 

law with the velocity gradient tensor Γ𝑘𝑙 at the grid 

points for T𝑖𝑗 as follows: 

𝜕T𝑖𝑗(𝑃𝑇𝑦)

𝜕𝑡
= ∑ 𝐶𝑖𝑗𝑘𝑙𝑘,𝑙 Γ𝑘𝑙(𝑃𝑇𝑦)        (2) 

where 𝐶𝑖𝑗𝑘𝑙  is stiffness. The values of Γ𝑘𝑙(𝑃𝑇𝑦) 

can be computed by derivatives of linear fields of 

velocity in the control volume. Here, we assume that 

Γ𝑘𝑙 is a constant in the control volume. 
  

3. Stability Analysis of FDTD Models 

We used von Neumann stability analysis of FDTD 

models of a two-dimensional Lamé-mode resonator 

on a quartz plate: applying central difference 

approximation with the second order accuracy to the 

spatial derivatives in Newton’s equation of motion 

and the strain-displacement relation with the elastic 

constitutive equation, we have 
∂

𝜕𝑡
𝑓(𝑛) =

𝑅

Δ𝑡
𝐴𝑓(𝑛) (3) 

where 𝑅 = 𝑉𝑁Δ𝑡/Δx is the Courant number, 𝑡 , 

𝑓(𝑛) = [𝑣(𝑛)𝑇 𝑇(𝑛)𝑇]
𝑇

, 𝐴, and ∆t are time, a field 

column vector composed of two column vectors, 

velocity column vector  𝑣(𝑛)  and stress-tensor 

column vector 𝑇(𝑛) with discretized field values at 

all grid points, the normalized matrix of finite 

difference spatial operator, and a time interval. Here, 

the superscript (𝑛) and T denote the values at the 

time 𝑡 = 𝑛Δt  and transpose of the column vector. 

(c) 
Fig. 1 stable SGCV models of free boundaries: (a) 

computing velocities in the free boundary,6) (b) 

computing integrations on the control volume. 
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We used 𝑉𝑁 = (𝐶𝑁/𝜌)1/2 with CN  being the 

maximum value of the stiffness values.  

Assuming that the elastic fields are time-

harmonic fields with angular frequency 𝜔, we have 

𝑓(𝑛) = 𝑓ω𝑒𝑗𝜔𝑛Δ𝑡 . Hence, we can derive an 

eigenvalue problem from (3) as follows: 

𝑗
𝜔Δ𝑡

𝑅
𝑓ω = 𝐴𝑓ω (4) 

where (𝑗ωΔt/𝑅) and 𝑓ω are the eigenvalue and the 

eigenvector of the matrix 𝐴.  

Using the second order approximation of the 

time derivative in (3), 𝜕𝑓(𝑛)/𝜕𝑡 ≈ (𝑓(𝑛+1/2) −

𝑓(𝑛−1/2))/Δ𝑡 = 𝑗𝜔𝑓(𝑛) , we have a quadratic 

equation for q = 𝑒𝑥𝑝(𝑗ωΔ
𝑡
/2): 𝑞2 − (𝑗𝜔Δ𝑡)𝑞 −

1 = 0. The solutions of this equation are 

      q = jωΔ
t
/2 ± [1 + (𝑗ωΔ

t
/2)

2
]

1/2

.  (5) 

If |𝑞| ≤ 1, FDTD fields are stable.  

Hence, when all computed eigenvalues (𝑗𝜔Δt/
𝑅)  of A in (4) are Re(𝑗𝜔Δt/𝑅) = 0  and 
|Im(𝑗𝜔Δt/𝑅)| ≤ 2/𝑅, the FDTD model is stable. 

  

4. Numerical Results 

We consider a two-dimensional Lamé-mode 

resonator with side length 𝑙𝑥 = 2𝑛𝑎  and 𝑙𝑦 =

2𝑚𝑏 = 0.9673𝑙𝑥  along the 𝑥  and 𝑦  axes on a 

quartz plate with Euler’s angle  (0°, −29.347° , 

0°) in vacuum.6) Here, we used the Bechmann’s 

constants and ignored the piezoelectricity. Figure 2 

shows distributions of computed eigenvalues of (4) 

by the FDFD method run in the double precision 

arithmetic with 𝑚 = 𝑛 = 1  and 𝑁 = 𝑙𝑥/𝛥𝑥 = 𝑙𝑦/

Δ
𝑦

= 26. The largest absolute values of the real 

parts of the eigenvalues computed by FDFD 

method run in the double and quadruple 

precision arithmetic are shown in table 1. These 

values computed in the quadruple precision 

arithmetic are smaller than values in the double 

precision arithmetic and we can see that 
Re(jωΔt/R) = 0. Therefore, two FDTD models are 

stable. 

Table 2 shows parameters extracted by fitting a 

function of N, (𝑗𝜔𝛥𝑡/𝑅)(𝑁)  =  (𝑗2𝜋𝑙𝑥𝑓𝑐/𝑉𝑁)(𝑓0/

𝑁 + 𝑓𝑝 × 𝑁−𝑝−1), to eigenvalues of (3) computed 

with N =  25, 26, 27, and 28. Here, 𝑓c  is the 

resonance frequency of the Lamé-mode and we use 

the extrapolated value from computed results by the 

COMSOL Multiphysics, 𝑙𝑥𝑓𝑐 = 2400.24  m/s. 

These values show that the RSG and SGCV models 

are comparable in accuracy. 
  

5. Conclusions 

A stable SGCV model of free-boundary with 

velocity grid points positioned in boundaries is 

developed for unified approach to model interfaces 

between two, three, and four different media. We 

demonstrated that this model is stable for modeling 

the interface between vacuum and an anisotropic 

solid. 
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(a)                  (b) 

Fig.2 Eigenvalue distributions computed by FDFD 

method with free-boundary models (a) presented SGCV 

model, (b) rotated staggered grid (RSG) model3,4) with 

grid points of stress components in the free-boundaries.  

 Table 2 Convergence parameters of the normalized 

resonance frequency. 

Model 𝑓0 − 1 𝑓𝑝 𝑝 

SGCV −4.54 × 10−6 0.907 1.91 

RSG −7.98 × 10−6 1.45 1.96 

 

Table 1 The largest value of the real parts of the 

eigenvalues. 

Model Double Quadruple 

SGCV 1.1 × 10−14 2.9 × 10−32 

RSG 3.0 × 10−10 5.2 × 10−19 

 

-1.5 0 1.5
-2.5

-2

-1

0

1

2
2.5  

0
-2

-1

0

1

2

-4 4


	ISTSProgramNumber: 
	0: 
	18753445842466454: 1Pb2-6




