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1. Introduction 

Optimal irrigation control is important not 
only for water conservation but also for keeping 
plants healthy and producing tasty crops. When 
plants are over- or under-irrigated, they are 
subjected to water stress, resulting in wilting of 
leaves and other symptoms. However, moderate 
water stress is considered desirable, and to achieve 
such a state, it is necessary to estimate plant water 
stress noninvasively and sensitively in real time 
based on the speaking plant approach (SPA). 

Non-invasive estimation of water stress in 
plants has been studied from various angles, for 
example, spectroscopic methods such as leaf color, 
red edge, and infrared absorption by water1-3) , leaf 
temperature measurement4), observation of leaf 
projection5) and photosynthesis (PSII) by 
chlorophyll fluorescence6). Then, we have been 
studying the possibility of detecting water stress in 
plants from changes in the natural frequencies of 
leaves as a new method7, 8). 

As a result, the natural frequency of one leaf, 
including the petiole, of a one-month-old 
komatsuna plant grown in soil with bottom water 
supply showed diurnal changes as shown in Fig. 1. 
A few days after the irrigation was stopped, the 
tendency was reversed, and the natural frequency 
during the daytime was found to be much lower 
than at night. Two days later, the leaves wilted. 
Thus, the state of water stress in the plant could be 
quickly estimated from the change in natural 
frequencies. 
 

2. Method 

2.1 Observation of natural frequency of leaf 
Figure 2 shows the setup for measuring the 

damped vibration of a leaf. In this experiment, the 
leaves were pressed uniformly with acoustic 
radiation pressure from a 40 kHz ultrasonic source 
to produce damped vibrations, which were captured 
by a webcam on a PC. 

However, since it is difficult to 
automatically select feature regions to be tracked by 
the correlation tracking method, we proposed a 
method to divide a frame image of a leaf into 
blocks and measure the frequency of variation of 
the mean value of each block9). That is, first, after 

extracting and binarizing leaves as shown in Fig. 3 
(a), the frame image is divided into blocks as shown 
in (b), and the average of the pixel values in each 
block is obtained. Next, the time variation is 
recorded for a 5×5 area within it. As a result, 
waveforms associated with leaf decay vibration are 
recorded in several blocks, as shown in (c). 

 
Fig. 1. Diurnal change of natural frequency of leaf. 

 

 
(a) Binarization        (b) Blocking 

 
(c) dumping curve of each block 

Fig. 3. Block area and dumping curve 
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Fig. 2. The experimental setup 
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It is necessary to select an appropriate block 
from among these blocks and calculate its natural 
frequency, but a person must decide which block to 
adopt. We are considering the possibility of using 
deep learning for this decision. 

2.2 Deep Learning 

Deep learning is a type of machine learning 

that increases both the number of layers of a 

hierarchical neural network and the number of 

neurons in each layer to learn from huge amounts of 

data. Convolutional Neural Networks (CNNs) are 

known to significantly improve performance, 

especially for images. CNN is a method that 

extracts image features by convolution and pooling, 

and classifies them with a conventional hierarchical 

neural network (all connected layers).  

In this study, 1D CNN was used by 

considering the time series data as 1D images. The 

input data (decaying waveform) is unified to 140 

points, and convolution is first performed with n1 

(=8) types of 1×3 filters. Next, the data length was 

reduced to 70 points by max-pooling. Then, 

convolution is performed with n2 (=8) types of 

1×3×n1 filters, and max-pooling is used to further 

reduce the data length to half (35 points). These 

processes are repeated two more times to reduce the 

data length to 8. The 8×n2 data are then rearranged 

into a single column and input to the all-connected 

(affine) layer. In the all-connected layer, the number 

of nodes in the intermediate layer is 16 and the 

number of nodes in the output layer is 2. The 

network structure is shown in Fig. 4 (a) and the 

number of nodes in each layer is shown in (b).  
As the development environment, we 

employed the Neural Network Console of Sony 
Network Communications Inc. which allows easy 
design of CNNs. 

 

 

The activation function was the general 
ReLU and the outputs were normalized to a total of 
100 % with the SoftMax function. The optimization 
algorithm was Adagrad, the learning coefficient was 
0.01, the number of training cycles was 100, and 
the loss function was the cross-entropy error. 

4. Result 

      First, the 4,600 decay waveforms shown in 

Fig. 3(c) were classified into decay and other 

waveforms to create a dataset for training. Next, 

half of the dataset was used for training the neural 

network. Finally, the other half of the dataset was 

used to evaluate the decay curve judgment. As a 

result, the discrimination accuracy (correct response 

rate) was 98.17 %. 

5. Conclusion 
In this paper, for the purpose of optimal 

irrigation control, we focused on water stress in 
plants and examined the possibility of using deep 
learning to determine the changes in the natural 
frequency of leaf that appear because of the water 
stress. As a result, relatively good accuracy was 
obtained, although the number of data used for 
training and the design of the CNN are still 
insufficient. 

In the future, we plan to improve the neural 
network by increasing the number of training data, 
as well as reexamining the activation function and 
optimization function, and changing the number of 
layers, aiming for further improvement in accuracy.  
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(b) Size table 

Fig. 4. Used neural network 
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