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Differential Forms for the Application

to Electromechanical Coupling Systems

Michio Ohki (Natl. Def. Acad., Japan)

1. Introduction

Instead of the conventional tensor or vector analy-
sis, exterior differential forms (or simply differential
forms) can be utilized for the simplification of the
mathematical framework: For example, the opera-
tions of the gradient, the rotation (curl), and the di-
vergence are unified in a simple manner.

Moreover, the method of differential form enables
us to discuss physical quantities more essentially and
precisely: For example, although the electric flux
density is usually treated as a first-rank tensor or
(polar) vector, it is essentially an anti-symmetrical
second-rank pseudo (or twisted) tensor?).

In this study, the application of the method of dif-
ferential form to the electromechanical coupling phe-
nomena and transducers is discussed. Some original
or improved notations are also introduced for clearer
discussion in addition to the conventional notations.

2. Outline of the method of differential form

A differential “n-form” is a kind of inner product
between a physical quantity that is expressed with
an anti-symmetrical co-variant nth-rank tensor and
a contra-variant n-dimensional volume integral ele-
ment. For example, some typical physical quantities
and operators are expressed as differential forms (a
bar (7) is added as the notation) as follows :

« Scalar potential ¢ — ¢ = ¢ -1 = ¢ (0-form);

+ Electric field E — E = E;dx* = Eydz! + Eqdx? +
Esdz® (1-form);

+ Nabla (del) operator V. — V = 9;dz’ = O1dz! +
Oodx? + O5dz® (1-form), where 9; = %;

+ Electric flux density D — D = Dasdaz? A da® +
D31dl’3 A dz! + Dmd?[]l A dz? (2-form), where
D3y = —Das, D11 =0, etc.;

+ Electric charge density or mass density p — p =
p12adx! A dx? A dx3 (3-form) .

In the formulation above, the wedge product de-
noted by “A” is used, which has anti-symmetrical
properties such as dz! Adz? = —dz? Adz!, de Adxt =
0, de* Adz? Adx® = da? AdxP Adx' = —dx Ada3 Ada?,
etc. In general, the wedge product is constructed by
anti-symmetrizing the direct product denoted by “®”
as follows: pAG=pRq—qGRp, and pAGAT =
PRIRT+IRTRP+TRPRJ—PRTRJ—TRIRP—JRPRT.

The star operator or Hodge operator denoted by “x”
is used to transform an n-form into a (3 —n)-form. For
example, xdz! = dz? Adx®, x(dx® Ndzt) = da?, x(dxt A
dz? A dz?) = 1, and the usage of % twice in a row
changes nothing: +xx = 1, and the inverse operator
satisfies ()71 = *.

The exterior derivative, denoted by “d” usually but
“VA” in this study, provides:

+ Operation of the gradient, when VA operates on
a O-form, resulting in a 1-form;

« Operation of the rotation (curl), when VA oper-
ates on a 1-form, resulting in a 2-form;

« Operation of the divergence, when VA operates
on a 2-form, resulting in a 3-form,

and the usage of VA twice in a row results in zero:
(VA)(VA) = 0. For example, the exterior derivative
of ¢ (0-form), V A ¢, is calculated as 9;dz* A (¢ - 1) =
Oipdx' N1 = 9;¢pdx’, where da* A1 = da’ is de-
fined. The result corresponds to the gradient of ¢
expressed with a 1-form. V A (V A ¢) is calculated
as 9;dzd A (0;¢dx’) = (0;0;0)(dx? A dx') = 0, since
9;0;¢ = 0;0;¢, dx’ \dx' = —dx' N da?, and 37, is
conducted.

3. Relations among E, D, S (strain), and 7" (stress)
The notation E; is introduced for describing the i-
th term of E, and similarly the notation D, is also
introduced. For example, E; = E;dz', and D; =
D23(*dac1). In the conventional tensor analysis, FE
and D are both first-rank tensors, and therefore, the
operations of V- E and V x D are admitted.



However, E and D only accept the operation of
rotation and divergence, respectively. The permittiv-
ity & should fulfill a function to transform 1-form into
2-form:

where 5{ is an (4,5)-element of the conventional per-
mittivity tensor, and the “delayed sum”, denoted by
“Y delayea » 18 introduced, which requests that the ap-
plication of Einstein summation convention should be
delayed until needed. While V A E generates V x E,
V AEE leads to V - ¢E.

The strain and stress cannot be represented with
simple differential forms. The strain is expressed as

_ ) 1 ) .
S = SideCZ X dx? = 5 (3,u] + 8JU7) dx* &® dl‘j,

which is the direct product of a 1-form and a 1-form
((1,1)-form). The matrix representation for S is

Sndxlda:l Slgdl‘ld$2 Sw,dl‘ldxg
5’ == 521 d$2d$1 522d$2d$2 Sggd$2d$3 5
Sgldl'gdl'l ngdl’gdl'z Sggdl’gdl'g

which is a symmetrical matrix.

In the definition of the stress, since the non-
rotational force T;; in the j-direction on the i-plane
(per unit area) is considered, the stress is expressed
as
T = Ti;(xd2") @ da? = Tji(xdz?) @ da’,
which is the direct product of a 2-form and a 1-form
((2,1)-form). The stiffness & that transforms S in (1,
1)-form into the (2, 1)-form should have the following
form:
Tij = Eff Ski;
rl_ o (xdzt) @ dad

Cij = Z Cij dak & da!
delayed

where cfjl is the conventional stiffness tensor.

By taking an exterior derivative on (the part of the
2-form of) T,

VAT = 0Ty;(da® A (xdz?)) @ da?

A , (1)
= W Ti;6"dV @ da’,

is obtained ((3,1)-form), where only the case of i = k
remains in da* A (xdz?), which forms dV = da! Adx? A
dx? (3-form), and §% is the Kronecker delta.

The calculation of V A &S can be performed simi-
larly, by considering that &S is now a (2,1)-form.

According to Newton’s second law, eq. (1) is equiv-
alent to

p® 0% = pd u;dV @da?  ((3,1)-form),

where 9,2 =

at29
of the mass density (3-form), and 4@ = w;dz* is the

p = pdV is the differential form

differential form of the displacement (1-form).
The electromechanical coupling phenomena can

be described as
D = & Ty

K3

(direct effect),

Sk = J’ékEi (converse effect),

where ( )
— ; dx®

dh= 3 gt )

' delalzy:ed ' (xdad) @ da*

- ; drd ® dat
delayed

The conventional d-constants (the subscripts and su-
perscripts are omitted here) for the direct and con-
verse effects are identical in value and dimension
reciprocally, since d = —02°G/(9T;,0E;) with D; =
0G/OE; and S}, = 0G/0Tj;, for Gibbs free energy G;
however, we find that Jg ko J’;k from the viewpoint
of differential form.

The relations among E, D, S and T in an elec-
tromechanical transducer can be described, in gen-
eral, by using a function f as

f(E,D,S,T)=0 = VAf(E,D,S,T)=0, (2
in which the boundary conditions are reflected by
considering which elements of E, D, S, T, and V re-
main or disappear. The wave equation with regard to
@ can be derived from eq. (2), using VAT = p® 94,
VAE=0(VxE=0),and VAD =0 (V-D = 0), and
then the acoustic velocity can be obtained. Different
operations of derivative are unified by using the exte-
rior derivative, which is one of the advantages of the
method of differential form.
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