Differential Forms for the Application to Electromechanical Coupling Systems

Michio Ohki (Natl. Def. Acad., Japan)

1. Introduction

Instead of the conventional tensor or vector analysis, exterior differential forms (or simply differential forms) can be utilized for the simplification of the mathematical framework: For example, the operations of the gradient, the rotation (curl), and the divergence are unified in a simple manner.

Moreover, the method of differential form enables us to discuss physical quantities more essentially and precisely: For example, although the electric flux density is usually treated as a first-rank tensor or (polar) vector, it is essentially an anti-symmetrical second-rank pseudo (or twisted) tensor ${ }^{1)}$.

In this study, the application of the method of differential form to the electromechanical coupling phenomena and transducers is discussed. Some original or improved notations are also introduced for clearer discussion in addition to the conventional notations.

2. Outline of the method of differential form

A differential " n-form" is a kind of inner product between a physical quantity that is expressed with an anti-symmetrical co-variant n th-rank tensor and a contra-variant n-dimensional volume integral element. For example, some typical physical quantities and operators are expressed as differential forms (a bar $\left(^{-}\right)$is added as the notation) as follows :

- Scalar potential $\phi \rightarrow \bar{\phi}=\phi \cdot 1=\phi$ (0 -form);
- Electric field $\boldsymbol{E} \rightarrow \bar{E}=E_{i} d x^{i}=E_{1} d x^{1}+E_{2} d x^{2}+$ $E_{3} d x^{3}$ (1-form);
- Nabla (del) operator $\nabla \rightarrow \bar{\nabla}=\partial_{i} d x^{i}=\partial_{1} d x^{1}+$ $\partial_{2} d x^{2}+\partial_{3} d x^{3}$ (1-form), where $\partial_{i}=\frac{\partial}{\partial x^{2}}$;
- Electric flux density $\boldsymbol{D} \rightarrow \bar{D}=D_{23} d x^{2} \wedge d x^{3}+$ $D_{31} d x^{3} \wedge d x^{1}+D_{12} d x^{1} \wedge d x^{2}$ (2-form), where $D_{32}=-D_{23}, D_{11}=0$, etc.;
- Electric charge density or mass density $\rho \rightarrow \bar{\rho}=$ $\rho_{123} d x^{1} \wedge d x^{2} \wedge d x^{3}$ (3-form).

In the formulation above, the wedge product denoted by " \wedge " is used, which has anti-symmetrical properties such as $d x^{1} \wedge d x^{2}=-d x^{2} \wedge d x^{1}, d x^{1} \wedge d x^{1}=$ $0, d x^{1} \wedge d x^{2} \wedge d x^{3}=d x^{2} \wedge d x^{3} \wedge d x^{1}=-d x^{1} \wedge d x^{3} \wedge d x^{2}$, etc. In general, the wedge product is constructed by anti-symmetrizing the direct product denoted by " \otimes " as follows: $\bar{p} \wedge \bar{q}=\bar{p} \otimes \bar{q}-\bar{q} \otimes \bar{p}$, and $\bar{p} \wedge \bar{q} \wedge \bar{r}=$ $\bar{p} \otimes \bar{q} \otimes \bar{r}+\bar{q} \otimes \bar{r} \otimes \bar{p}+\bar{r} \otimes \bar{p} \otimes \bar{q}-\bar{p} \otimes \bar{r} \otimes \bar{q}-\bar{r} \otimes \bar{q} \otimes \bar{p}-\bar{q} \otimes \bar{p} \otimes \bar{r}$.

The star operator or Hodge operator denoted by " \star " is used to transform an n-form into a $(3-n)$-form. For example, $\star d x^{1}=d x^{2} \wedge d x^{3}, \star\left(d x^{3} \wedge d x^{1}\right)=d x^{2}, \star\left(d x^{1} \wedge\right.$ $\left.d x^{2} \wedge d x^{3}\right)=1$, and the usage of \star twice in a row changes nothing: $\star \star \equiv 1$, and the inverse operator satisfies $(\star)^{-1} \equiv \star$.
The exterior derivative, denoted by " d " usually but " $\bar{\nabla} \wedge "$ in this study, provides:

- Operation of the gradient, when $\bar{\nabla} \wedge$ operates on a 0 -form, resulting in a 1 -form;
- Operation of the rotation (curl), when $\bar{\nabla} \wedge$ operates on a 1 -form, resulting in a 2 -form;
- Operation of the divergence, when $\bar{\nabla} \wedge$ operates on a 2 -form, resulting in a 3 -form,
and the usage of $\bar{\nabla} \wedge$ twice in a row results in zero: $(\bar{\nabla} \wedge)(\bar{\nabla} \wedge) \equiv 0$. For example, the exterior derivative of $\bar{\phi}$ (0-form), $\bar{\nabla} \wedge \bar{\phi}$, is calculated as $\partial_{i} d x^{i} \wedge(\phi \cdot 1)=$ $\partial_{i} \phi d x^{i} \wedge 1=\partial_{i} \phi d x^{i}$, where $d x^{i} \wedge 1=d x^{i}$ is defined. The result corresponds to the gradient of ϕ expressed with a 1 -form. $\bar{\nabla} \wedge(\bar{\nabla} \wedge \bar{\phi})$ is calculated as $\partial_{j} d x^{j} \wedge\left(\partial_{i} \phi d x^{i}\right)=\left(\partial_{j} \partial_{i} \phi\right)\left(d x^{j} \wedge d x^{i}\right)=0$, since $\partial_{j} \partial_{i} \phi=\partial_{i} \partial_{j} \phi, d x^{j} \wedge d x^{i}=-d x^{i} \wedge d x^{j}$, and $\sum_{i, j}$ is conducted.

3. Relations among E, D, S (strain), and T (stress)

The notation \bar{E}_{i} is introduced for describing the i th term of \bar{E}, and similarly the notation \bar{D}_{i} is also introduced. For example, $\bar{E}_{1}=E_{1} d x^{1}$, and $\bar{D}_{1}=$ $D_{23}\left(\star d x^{1}\right)$. In the conventional tensor analysis, \boldsymbol{E} and \boldsymbol{D} are both first-rank tensors, and therefore, the operations of $\nabla \cdot \boldsymbol{E}$ and $\nabla \times \boldsymbol{D}$ are admitted.

However, \bar{E} and \bar{D} only accept the operation of rotation and divergence, respectively. The permittivity $\bar{\varepsilon}$ should fulfill a function to transform 1 -form into 2-form:

$$
\begin{gathered}
\bar{D}_{i}=\bar{\varepsilon}_{i}^{j} \bar{E}_{j} \\
\bar{\varepsilon}_{i}^{j}=\sum_{\text {delayed }} \varepsilon_{i}^{j}\left(\star d x^{i}\right) / d x^{j},
\end{gathered}
$$

where ε_{i}^{j} is an (i, j)-element of the conventional permittivity tensor, and the "delayed sum", denoted by " $\sum_{\text {delayed }}$ ", is introduced, which requests that the application of Einstein summation convention should be delayed until needed. While $\bar{\nabla} \wedge \bar{E}$ generates $\nabla \times \boldsymbol{E}$, $\bar{\nabla} \wedge \bar{\varepsilon} \bar{E}$ leads to $\nabla \cdot \varepsilon \boldsymbol{E}$.

The strain and stress cannot be represented with simple differential forms. The strain is expressed as

$$
\bar{S}=S_{i j} d x^{i} \otimes d x^{j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right) d x^{i} \otimes d x^{j}
$$

which is the direct product of a 1 -form and a 1 -form ((1,1)-form). The matrix representation for \bar{S} is

$$
\bar{S}=\left(\begin{array}{ccc}
S_{11} d x^{1} d x^{1} & S_{12} d x^{1} d x^{2} & S_{13} d x^{1} d x^{3} \\
S_{21} d x^{2} d x^{1} & S_{22} d x^{2} d x^{2} & S_{23} d x^{2} d x^{3} \\
S_{31} d x^{3} d x^{1} & S_{32} d x^{3} d x^{2} & S_{33} d x^{3} d x^{3}
\end{array}\right)
$$

which is a symmetrical matrix.
In the definition of the stress, since the nonrotational force $T_{i j}$ in the j-direction on the i-plane (per unit area) is considered, the stress is expressed as

$$
\bar{T}=T_{i j}\left(\star d x^{i}\right) \otimes d x^{j}=T_{j i}\left(\star d x^{j}\right) \otimes d x^{i}
$$

which is the direct product of a 2 -form and a 1 -form ((2,1)-form). The stiffness \bar{c} that transforms \bar{S} in (1, $1)$-form into the $(2,1)$-form should have the following form:

$$
\begin{gathered}
\bar{T}_{i j}=\bar{c}_{i j}^{k l} \bar{S}_{k l}, \\
\bar{c}_{i j}^{k l}=\sum_{\text {delayed }} c_{i j}^{k l} \frac{\left(\star d x^{i}\right) \otimes d x^{j}}{d x^{k} \otimes d x^{l}}
\end{gathered}
$$

where $c_{i j}^{k l}$ is the conventional stiffness tensor.
By taking an exterior derivative on (the part of the 2-form of) \bar{T},

$$
\begin{align*}
\bar{\nabla} \wedge \bar{T} & =\partial_{k} T_{i j}\left(d x^{k} \wedge\left(\star d x^{i}\right)\right) \otimes d x^{j} \\
& =\partial_{k} T_{i j} \delta^{i k} d V \otimes d x^{j} \tag{1}
\end{align*}
$$

is obtained ((3,1)-form), where only the case of $i=k$ remains in $d x^{k} \wedge\left(\star d x^{i}\right)$, which forms $d V \equiv d x^{1} \wedge d x^{2} \wedge$ $d x^{3}$ (3-form), and $\delta^{i k}$ is the Kronecker delta.

The calculation of $\bar{\nabla} \wedge \bar{c} \bar{S}$ can be performed similarly, by considering that $\bar{c} \bar{S}$ is now a (2,1)-form.

According to Newton's second law, eq. (1) is equivalent to

$$
\bar{\rho} \otimes \partial_{t}^{2} \bar{u}=\rho \partial_{t}^{2} u_{j} d V \otimes d x^{j} \quad((3,1) \text {-form })
$$

where $\partial_{t}{ }^{2}=\frac{\partial^{2}}{\partial t^{2}}, \bar{\rho}=\rho d V$ is the differential form of the mass density (3-form), and $\bar{u}=u_{i} d x^{i}$ is the differential form of the displacement (1-form).

The electromechanical coupling phenomena can be described as

$$
\begin{aligned}
\bar{D}_{i} & =\bar{d}_{i}^{j k} \bar{T}_{j k} \quad(\text { direct effect }) \\
\bar{S}_{j k} & =\bar{d}^{i}{ }_{j k}^{i} \bar{E}_{i} \quad(\text { converse effect }),
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{d}_{i}^{j k} & =\sum_{\text {delayed }} d_{i}^{j k} \frac{\left(\star d x^{i}\right)}{\left(\star d x^{j}\right) \otimes d x^{k}}, \\
\bar{d}_{j k}^{\prime} & =\sum_{\text {delayed }} d_{j k}^{i} \frac{d x^{j} \otimes d x^{k}}{d x^{i}} .
\end{aligned}
$$

The conventional d-constants (the subscripts and superscripts are omitted here) for the direct and converse effects are identical in value and dimension reciprocally, since $d=-\partial^{2} G /\left(\partial T_{j k} \partial E_{i}\right)$ with $D_{i}=$ $\partial G / \partial E_{i}$ and $S_{j k}=\partial G / \partial T_{j k}$ for Gibbs free energy G; however, we find that $\bar{d}_{i}^{j k} \neq \bar{d}^{\prime}{ }_{j k}$ from the viewpoint of differential form.
The relations among $\bar{E}, \bar{D}, \bar{S}$ and \bar{T} in an electromechanical transducer can be described, in general, by using a function f as

$$
\begin{equation*}
f(\bar{E}, \bar{D}, \bar{S}, \bar{T})=0 \rightarrow \bar{\nabla} \wedge f(\bar{E}, \bar{D}, \bar{S}, \bar{T})=0 \tag{2}
\end{equation*}
$$

in which the boundary conditions are reflected by considering which elements of $\bar{E}, \bar{D}, \bar{S}, \bar{T}$, and $\bar{\nabla}$ remain or disappear. The wave equation with regard to \bar{u} can be derived from eq. (2), using $\bar{\nabla} \wedge \bar{T}=\bar{\rho} \otimes \partial_{t}{ }^{2} \bar{u}$, $\bar{\nabla} \wedge \bar{E}=0(\nabla \times \boldsymbol{E}=\mathbf{0})$, and $\bar{\nabla} \wedge \bar{D}=0(\nabla \cdot \boldsymbol{D}=0)$, and then the acoustic velocity can be obtained. Different operations of derivative are unified by using the exterior derivative, which is one of the advantages of the method of differential form.

References

1. F. W. Hehl and Y. N. Obukhov: Foundations of Classical Electrodynamics, Charge, Flux, and Metric (Birkhäuser, 2003).
