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1. Introduction
Instead of the conventional tensor or vector analy-
sis, exterior differential forms (or simply differential
forms) can be utilized for the simplification of the
mathematical framework: For example, the opera-
tions of the gradient, the rotation (curl), and the di-
vergence are unified in a simple manner.
Moreover, the method of differential form enables

us to discuss physical quantities more essentially and
precisely: For example, although the electric flux
density is usually treated as a first-rank tensor or
(polar) vector, it is essentially an anti-symmetrical
second-rank pseudo (or twisted) tensor1).
In this study, the application of the method of dif-

ferential form to the electromechanical coupling phe-
nomena and transducers is discussed. Some original
or improved notations are also introduced for clearer
discussion in addition to the conventional notations.

2. Outline of the method of differential form
A differential “n-form” is a kind of inner product
between a physical quantity that is expressed with
an anti-symmetrical co-variant nth-rank tensor and
a contra-variant n-dimensional volume integral ele-
ment. For example, some typical physical quantities
and operators are expressed as differential forms (a
bar (¯) is added as the notation) as follows :

• Scalar potential ϕ → ϕ̄ = ϕ · 1 = ϕ (0-form);

• Electric field E → Ē = Eidx
i = E1dx

1+E2dx
2+

E3dx
3 (1-form);

• Nabla (del) operator ∇ → ∇̄ = ∂idx
i = ∂1dx

1 +

∂2dx
2 + ∂3dx

3 (1-form), where ∂i = ∂
∂xi ;

• Electric flux density D → D̄ = D23dx
2 ∧ dx3 +

D31dx
3 ∧ dx1 + D12dx

1 ∧ dx2 (2-form), where
D32 = −D23, D11 = 0, etc.;

• Electric charge density or mass density ρ → ρ̄ =

ρ123dx
1 ∧ dx2 ∧ dx3 (3-form) .

In the formulation above, the wedge product de-
noted by “∧” is used, which has anti-symmetrical
properties such as dx1∧dx2 = −dx2∧dx1, dx1∧dx1 =

0, dx1∧dx2∧dx3 = dx2∧dx3∧dx1 = −dx1∧dx3∧dx2,
etc. In general, the wedge product is constructed by
anti-symmetrizing the direct product denoted by “⊗”
as follows: p̄ ∧ q̄ = p̄ ⊗ q̄ − q̄ ⊗ p̄, and p̄ ∧ q̄ ∧ r̄ =

p̄⊗q̄⊗r̄+q̄⊗r̄⊗p̄+r̄⊗p̄⊗q̄−p̄⊗r̄⊗q̄−r̄⊗q̄⊗p̄−q̄⊗p̄⊗r̄.

The star operator or Hodge operator denoted by “⋆”
is used to transform an n-form into a (3−n)-form. For
example, ⋆dx1 = dx2∧dx3, ⋆(dx3∧dx1) = dx2, ⋆(dx1∧
dx2 ∧ dx3) = 1, and the usage of ⋆ twice in a row
changes nothing: ⋆⋆ ≡ 1, and the inverse operator
satisfies (⋆)−1 ≡ ⋆.
The exterior derivative, denoted by “d” usually but

“∇̄∧” in this study, provides:

• Operation of the gradient, when ∇̄∧ operates on
a 0-form, resulting in a 1-form;

• Operation of the rotation (curl), when ∇̄∧ oper-
ates on a 1-form, resulting in a 2-form;

• Operation of the divergence, when ∇̄∧ operates
on a 2-form, resulting in a 3-form,

and the usage of ∇̄∧ twice in a row results in zero:
(∇̄∧)(∇̄∧) ≡ 0. For example, the exterior derivative
of ϕ̄ (0-form), ∇̄ ∧ ϕ̄, is calculated as ∂idxi ∧ (ϕ · 1) =
∂iϕdxi ∧ 1 = ∂iϕdxi, where dxi ∧ 1 = dxi is de-
fined. The result corresponds to the gradient of ϕ
expressed with a 1-form. ∇̄ ∧ (∇̄ ∧ ϕ̄) is calculated
as ∂jdxj ∧ (∂iϕdxi) = (∂j∂iϕ)(dx

j ∧ dxi) = 0, since
∂j∂iϕ = ∂i∂jϕ, dxj ∧ dxi = −dxi ∧ dxj , and

∑
i,j is

conducted.

3. Relations among E,D, S (strain), and T (stress)
The notation Ēi is introduced for describing the i-
th term of Ē, and similarly the notation D̄i is also
introduced. For example, Ē1 = E1dx

1, and D̄1 =

D23(⋆dx
1). In the conventional tensor analysis, E

and D are both first-rank tensors, and therefore, the
operations of ∇ ·E and ∇×D are admitted.



However, Ē and D̄ only accept the operation of
rotation and divergence, respectively. The permittiv-
ity ε̄ should fulfill a function to transform 1-form into
2-form:

D̄i = ε̄ji Ēj ,

ε̄ji =
∑
delayed

εji (⋆dx
i)/dxj ,

where εji is an (i,j)-element of the conventional per-
mittivity tensor, and the “delayed sum”, denoted by
“
∑
delayed”, is introduced, which requests that the ap-

plication of Einstein summation convention should be
delayed until needed. While ∇̄ ∧ Ē generates ∇×E,
∇̄ ∧ ε̄Ē leads to ∇ · εE.
The strain and stress cannot be represented with

simple differential forms. The strain is expressed as

S̄ = Sijdx
i ⊗ dxj =

1

2
(∂iuj + ∂jui) dx

i ⊗ dxj ,

which is the direct product of a 1-form and a 1-form
((1,1)-form). The matrix representation for S̄ is

S̄ =

S11dx
1dx1 S12dx

1dx2 S13dx
1dx3

S21dx
2dx1 S22dx

2dx2 S23dx
2dx3

S31dx
3dx1 S32dx

3dx2 S33dx
3dx3

 ,

which is a symmetrical matrix.
In the definition of the stress, since the non-

rotational force Tij in the j-direction on the i-plane
(per unit area) is considered, the stress is expressed
as

T̄ = Tij(⋆dx
i)⊗ dxj = Tji(⋆dx

j)⊗ dxi,

which is the direct product of a 2-form and a 1-form
((2,1)-form). The stiffness c̄ that transforms S̄ in (1,
1)-form into the (2, 1)-form should have the following
form:

T̄ij = c̄klij S̄kl,

c̄klij =
∑
delayed

cklij
(⋆dxi)⊗ dxj

dxk ⊗ dxl

where cklij is the conventional stiffness tensor.
By taking an exterior derivative on (the part of the

2-form of) T̄ ,

∇̄ ∧ T̄ = ∂kTij(dx
k ∧ (⋆dxi))⊗ dxj

= ∂kTijδ
ikdV ⊗ dxj ,

(1)

is obtained ((3,1)-form), where only the case of i = k

remains in dxk∧(⋆dxi), which forms dV ≡ dx1∧dx2∧
dx3 (3-form), and δik is the Kronecker delta.

The calculation of ∇̄ ∧ c̄S̄ can be performed simi-
larly, by considering that c̄S̄ is now a (2,1)-form.
According to Newton’s second law, eq. (1) is equiv-

alent to

ρ̄⊗ ∂t
2ū = ρ ∂t

2ujdV ⊗ dxj ((3,1)-form),

where ∂t
2 = ∂2

∂t2 , ρ̄ = ρ dV is the differential form
of the mass density (3-form), and ū = uidx

i is the
differential form of the displacement (1-form).
The electromechanical coupling phenomena can

be described as

D̄i = d̄jki T̄jk (direct effect),

S̄jk = d̄′
i
jkĒi (converse effect),

where
d̄jki =

∑
delayed

djki
(⋆dxi)

(⋆dxj)⊗ dxk
,

d̄′
i
jk =

∑
delayed

dijk
dxj ⊗ dxk

dxi
.

The conventional d-constants (the subscripts and su-
perscripts are omitted here) for the direct and con-
verse effects are identical in value and dimension
reciprocally, since d = −∂2G/(∂Tjk∂Ei) with Di =

∂G/∂Ei and Sjk = ∂G/∂Tjk for Gibbs free energy G;
however, we find that d̄jki ̸= d̄′

i
jk from the viewpoint

of differential form.
The relations among Ē, D̄, S̄ and T̄ in an elec-

tromechanical transducer can be described, in gen-
eral, by using a function f as

f(Ē, D̄, S̄, T̄ ) = 0 → ∇̄ ∧ f(Ē, D̄, S̄, T̄ ) = 0, (2)

in which the boundary conditions are reflected by
considering which elements of Ē, D̄, S̄, T̄ , and ∇̄ re-
main or disappear. The wave equation with regard to
ū can be derived from eq. (2), using ∇̄∧ T̄ = ρ̄⊗∂t

2ū,
∇̄∧Ē = 0 (∇×E = 0), and ∇̄∧D̄ = 0 (∇·D = 0), and
then the acoustic velocity can be obtained. Different
operations of derivative are unified by using the exte-
rior derivative, which is one of the advantages of the
method of differential form.
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