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1. Introduction 
A statistics evaluation for ultrasound echo 

envelope amplitudes contributes to the quantitative 
tissue characterization for diseases such as liver 
fibrosis [1]. In the statistics-based evaluation, there 
exists a statistical limitation due to the finite data 
length. In the present study, we formulated the 
statistical variance of the moment depending on the 
data length. Moreover, we examined the relationship 
between the analysis conditions for ultrasound echo 
envelopes and the statistical variances of the moment. 

2. Principles 
2.1 Rayleigh distribution 

The statistics of echo envelopes reflect the 
characteristics of scatterer distribution. For example, 
when the scatterers with sufficiently smaller than the 
area of point spread function (PSF), 𝐴PSF , are 
randomly, densely (more than 10 scatterers/𝐴PSF ), 
and homogeneously distributed, the obtained echo 
envelope amplitude 𝑥RA  follows a Rayleigh 
distribution [1], 

𝑝RA(𝑥RA) =
2𝑥RA

𝜎RA
exp (−

𝑥RA
2

𝜎RA
2 ) , (1) 

where 𝜎RA is a scale parameter. 

2.2 Statistical moment 

     The moment is an indicator for evaluating the 

statistical property of echo envelopes. The 

theoretical 𝑘 th-order of moment 𝑀T(𝑘; 𝑝)  of 

random variables following the probability 

distribution 𝑝(𝑥) is defined by 

𝑀T(𝑘; 𝑝) = E[𝑥𝑘] = ∫ 𝑥𝑘 ⋅ 𝑝(𝑥)𝑑𝑥
∞

−∞

, (2) 

where 𝑥  is the variable following 𝑝(𝑥)  and E[⋅] 
is an operation of expectation. When 𝑥RA  follows 

the Rayleigh distribution 𝑝RA(𝑥RA) in Eq. (1), the 

theoretical moment is given by [1] 

𝑀T(𝑘; 𝑝RA) = ∫ 𝑥RA
𝑘 ⋅ 𝑝RA(𝑥RA)𝑑𝑥RA

∞

−∞

= Γ (1 +
𝑘

2
) ⋅ 𝜎RA

𝑘 , (3)

 

where Γ(⋅) is a gamma function. 

2.3 Statistical variance of moment 

     The theoretical moment 𝑀T(𝑘; 𝑝) in Eq. (2) 

is given under the ideal condition of the unlimited 

data length; however, in actual cases, the data length 

is finite. Thus, let us define the 𝑘th-order of moment 

calculated from the 𝐿  random variables following 

𝑝(𝑥) as 
𝑀𝐿(𝑘; 𝑝) = E𝑙∈𝐿[𝑥𝑙

𝑘], (4) 

where 𝑥𝑙 is the 𝑙-th sample following 𝑝(𝑥). Let us 

describe 𝑥𝑙
𝑘 by 

𝑦𝑘,𝑙 = 𝑥𝑙
𝑘 . (5) 

Since 𝑥𝑙  is generated from the single population 

following 𝑝(𝑥) , 𝑦𝑘,𝑙  is also generated from the 

single population following 𝑝𝑘(𝑦𝑘) . Therefore, 

from the central limit theorem, the average of 𝑦𝑘,𝑙 

for 𝐿 independent samples, E𝑙∈𝐿[𝑦𝑘,𝑙], follows the 

normal distribution 𝑁(𝜇𝑦𝑘
, 𝜎𝑦𝑘

2 /𝐿) as 

E𝑙∈𝐿[𝑦𝑘,𝑙]                                                        

= E𝑙∈𝐿[𝑥𝑙
𝑘] = 𝑀𝐿(𝑘; 𝑝) ∈ 𝑁 (𝜇𝑦𝑘

,
𝜎𝑦𝑘

2

𝐿
) , (6)

 

𝑁 (𝜇𝑦𝑘
,
𝜎𝑦𝑘

2

𝐿
) =

1

√2𝜋𝜎𝑦𝑘
2

exp (−
(𝑥 − 𝜇𝑦𝑘

)
2

2𝜎𝑦𝑘
2 ) . (7) 

Here, 𝜇𝑦𝑘
 and 𝜎𝑦𝑘

2 /𝐿 are the average and variance 

of the normal distribution, respectively, and given by 

𝜇𝑦𝑘
= E[𝑦𝑘] = E[𝑥𝑘] = 𝑀T(𝑘; 𝑝), (8) 

𝜎𝑦𝑘
2 = E [(𝑦𝑘 − 𝜇𝑦𝑘

)
2

] = E [(𝑥𝑘 − E[𝑥𝑘])
2

]

= 𝑀T(2𝑘; 𝑝) − 𝑀T(𝑘; 𝑝)2. (9)
 

     Thus, the 𝑘th order of the moment 𝑀𝐿(𝑘; 𝑝) 

calculated from the 𝐿  independent samples 

following 𝑝(𝑥) follows the normal distribution, 
𝑀𝐿(𝑘; 𝑝)                                                               

∈ 𝑁(𝑀T(𝑘; 𝑝), {𝑀T(2𝑘; 𝑝) − 𝑀T(𝑘; 𝑝)2}/𝐿). (10)
 

This relationship shows that the moment 𝑀𝐿(𝑘; 𝑝) 

calculated from the 𝐿  independent samples 

statistically fluctuates with the variance of 

{𝑀T(2𝑘; 𝑝) − 𝑀T(𝑘; 𝑝)2}/𝐿 , even if all L samples 

follow 𝑝(𝑥)  and completely independent of each 

other. This is the statistical limitation in the statistical 

evaluation for the ultrasound echo envelopes. 

3. Methods 
3.1 Effective data length in the analyzed region for 
ultrasound echo envelopes 
     In the evaluation for the ultrasound echo 
envelopes, the sampling intervals in the depth and                                             
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lateral directions are generally narrower than the 
pulse length and beam width, respectively; therefore, 
the samples in the region of interest (ROI) have a 
dependence on neighboring samples. Therefore, to 
determine the statistical variance of the moment by 
Eq. (10), we have to know the effective data length 
in the ROI, 𝐿ROI, which is regarded as independent 
of each other. 
     This effective data length in the ROI is 
determined by the relationship between the ROI size 
and the shape of PSF [2]. Thus, we define the 
effective data length in the ROI, 𝐿ROI, as a ratio of 
the ROI area 𝐴ROI to the PSF area 𝐴PSF as 

𝐿ROI(𝜌) =
𝐴ROI

𝐴PSF(𝜌)
, (11) 

𝐴PSF(𝜌) = 𝐴𝑟𝑒𝑎 (PSF > max(PSF) ⋅ 10−
𝜌

20) , (12) 

where 𝐴PSF(𝜌) is the area of PSF larger than −𝜌 

dB of maximum amplitude of the PSF. 

3.2 Simulation conditions 
     To examine the relationship between the 
effective data length 𝐿ROI(𝜌)  and the statistical 
variances of the moment, 𝑀𝐿(𝑘; 𝑝RA), we simulated 
the ultrasound radiofrequency (RF) signals received 
from the randomly and densely distributed scatterer 
distribution, using Field II simulation tool [3,4]. The 
scatterers were distributed to be that the obtained 
echo envelopes follow the Rayleigh distribution 
𝑝RA(𝑥) in Eq. (1). The transmitted and sampling 
frequencies were set to 7.5 and 40 MHz, respectively, 
and the beam spacing was set to 0.3 mm. 
     Figure 1 shows an example of the simulated 
B-mode image. In Fig. 1, we set several widths of 
ROI and calculated the 1st and 3rd moments by Eq. 
(4). To exclude the effect of change of acoustic field 
in the depth direction, only the width of ROI was 
changed from 1.2 to 48.5 mm while the height of 
ROI was fixed at 3 mm. The ultrasound RF signals 
were simulated 500 times by randomly changing the 
scatterer distribution. 

4. Results and Discussion 
Figure 2 shows the variance of moments. The 

results for the simulated echo envelopes are shown 
by dotted markers and the theoretical variance 
calculated by substituting Eq. (3) into Eq. (10) is 
plotted with the black straight line. The horizontal 
axes for the simulation results are shown by the data 
length in the ROI (blue), and the effective data length 
in the ROI calculated by 𝐿ROI(𝜌 = 3)  (green) or 
𝐿ROI(𝜌 = 6) (red) using Eq. (11). 

As shown in Fig. 2, the variance of moments 
of simulated echo envelopes decreased as the ROI 
width became wider. When the data length in the 
ROI is regarded as the length of independent data, 𝐿, 
the statistical variance of moments (blue) largely 
deviated from the theoretical value (black straight 
line). Comparing the results for 𝜌 = 3 (green) and 

𝜌 = 6 (red) in Eq. (11), the latter corresponded to 
the theoretical value. Thus, the ratio of the ROI area 
𝐴ROI to the PSF area 𝐴PSF(𝜌 = 6) was related to 
the length of independent data, 𝐿. 

Thus, the statistical variance of the moment is 
related to the relationship between the ROI size and 
the PSF. If the statistical variance is too large for 
evaluating the tissue characteristics, the ROI size 
should be broadened, or the area of PSF should be 
narrowed (i.e., the ultrasound spatial resolution 
should be improved). 

4. Conclusion 
In the present study, the statistical variance of 

the moment was formulated and compared with the 
analyzed conditions for ultrasound echo envelopes. 
The effect of this statistical variance on tissue 
characterization will be evaluated in our future study. 
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Fig. 1. Simulated ultrasound B-mode image. 

 

 
Fig. 2. Relationship between data length and 

variances of (a) 1st and (b) 3rd moments. 

Straight line: theoretical value, dotted marker: 

simulation results with different horizontal axes. 
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