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1. Introduction 

Medical ultrasound systems are a modality 
that plays an important role in clinical practice. 

Beamforming is necessary to obtain ultrasound 

images. Generally, delay-and-sum (DAS) 

beamforming is used in clinical scanners. To obtain 
higher resolution, minimum-variance (MV)1,2) 

beamforming was devised as an adaptive 

beamformer. However, an MV beamformer is more 
computationally expensive than a DAS beamformer 

and requires a longer execution time. 

In this study, a convolutional neural network 

was designed using signals beamformed with DAS 
as input and those obtained with MV as output 

(teacher data). Since the convolutional operation is 

computationally less expensive than the matrix 
computation required for the MV method, we believe 

that it has the potential to achieve the same level of 

image quality as the MV beamformer at a short 

computation time.  

2. Methods 

The training data for deep learning was 
obtained by distributing ultrasonic scatterers using 
the ultrasound simulation program Field II3,4) and 
constructing a virtual phantom to simulate 
ultrasound transmission and reception. The 
parameters of the simulation were set so that a linear 
array probe with a center frequency of 7 MHz was 
simulated, and the scatterer number density was set 
at 250 mm−2.  DAS beamforming and MV 
beamforming were performed on the received RF 
signal, and the profiles after respective 
beamforming were obtained. The covariance matrix 
was estimated by the method developed in our 
previous study.5) In the human body, there are 
organs and lesions with various shapes. Therefore, 
an imaging method should be robust against the 
variation in target shapes, and the model needs to be 
trained with diverse data as much as possible. 
Therefore, the amplitudes and positions of hyper- 
and hypo-echoic cysts and point targets were 
randomly distributed in the training data. This was 

done because this would contribute to more 
effective predictions for unknown data. Examples 
of the actual training data generated are shown in 
Fig. 1.  

 
Fig. 1 Example images of (a) input data and (b) teacher 

data. 

Since the number of images required for 

deep learning varies depending on the quality of the 
data used for training and the complexity of the 

problem, the learning curve method6) was used to 

determine the preferred number of training data for 

this study as 1000 images. The Adam optimizer7) 
was used to optimize the model, and experiments 

were conducted with an initial learning rate of 

0.0005, batch size of 32, and number of epochs of 

20. 

A convolutional neural network (CNN) was 

used as the model in this study. The CNN structure 

used is shown in Fig. 2. 

 
Fig. 2 Convolutional neural network architecture.  
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The CNN consists of convolutional, ReLU, 

and batch normalization layers. The desired features 
are extracted by optimizing the weights and biases 

so that the two-dimensional response obtained by 

the convolutional filter is close to the correct data 

(teacher data). The ReLU layer has the advantage of 
rectifying the input signal and preventing gradient 

loss. 8) The batch normalization layer normalizes the 

output of each channel of the convolutional layer to 
speed up learning convergence and improve the 

learning rate.9) The string and cyst phantoms were 

used as test data for evaluation. Phantoms were 

created under the same conditions as those used to 
generate the training data. B-mode images of the 

phantoms actually used are shown in Fig. 3. 

Fig. 3 Test data of string (a) and anechoic cyst (b) 

phantoms obtained by DAS beamforming. 

3. Result 

The B-mode images obtained with the 

conventional and proposed methods are shown in 

Fig. 4. The proposed method shows improved 

contrast and also cyst and speckle patterns similar to 

those in the MV images. For comparison of the 
image quality of the proposed method, quantitative 

evaluation metrics on DAS, MV, and proposed 

method are shown in Table I.  
 

Table I Image quality among DAS, conventional MV, 

and proposed methods.  

 DAS MV proposed 

Contrast [dB] -3.03 -0.34 -0.52 

CNR [dB] 3.37 -3.30 -4.07 

lateral FWHM 

[mm] 
0.59 0.17 0.13 

Time [s] 10.96 689.61 12.15 

 
Contrast10), contrast-to-noise ratio (CNR)11), 

and full width at half maximum (FWHM) were used 

as evaluation indices. Contrast and CNR were 

calculated from the low-echo and speckle regions in 

the cyst phantom, and FWHM was calculated from 

the point spread function. The computation time was 
also compared among DAS and MV beamformers 

and proposed method.  

The proposed method shows similar values for 

most of the indices to MV, indicating that it is able to 
reproduce images obtained with MV with 

significantly shorter computation time than MV. 

 
Fig. 4 B-mode images of the anechoic cyst (left) and point 

target (right). (a) DAS. (b) MV. (c) Proposed method. 

4. Conclusion  

In this study, we investigated the use of deep 
learning to accelerate the MV beamforming. The 
proposed method reduces the computation time 
while maintaining the same image quality as the MV 
beamforming method, suggesting that it can be 
applied to other image quality enhancement methods. 

In the future, we plan to conduct validation 
experiments using actual phantoms and to verify the 
effectiveness of the proposed method when the 
properties of the training data are varied. 
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