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1. Introduction 

The Fano resonance [1, 2] originates from the 
constructive and destructive interference of a 
discrete localized state with a continuum of 
propagating modes that share the same frequency. 
That is, Fano resonance is a general wave 
phenomenon that does not depend on the nature of 
the waves. Thus, this resonance has also been 
reported in various classical systems such as 
photonic crystals and phononic metamaterials [2, 3, 
4] in addition to various artificial quantum structures. 
In addition, Fano resonances have a wide range of 
applications, such as sensing and switching. In 
particular, the manipulation of the line shape of Fano 
resonances has useful applications with significant 
flexibility. 

Suppression of the systems response due to 
destructive interference in Fano resonance has been 
explained using a simple model consisting of two 
weakly coupled harmonic oscillators [5]. Even in 
such a simple system, however, the expression for 
the resonance profile was not derived. Also, Fano 
parameters have been implicitly treated as real 
numbers in many previous studies. In the previous 
work [6], we analytically examined the resonance 
generated in two weakly coupled harmonic 
oscillators. We derived the analytical expressions for 
the amplitude profiles near the resonant frequencies 
and showed that the resonance can be generally 
described by a Fano formula with a complex Fano 
parameter. However, our formula can be used for the 
oscillators systems consisting of non-equivalent 
oscillators. 

In the present paper, we consider a system in 
which a periodic external force is applied to weakly 
coupled two equivalent oscillators whose 
eigenfrequencies are degenerate.  

2. Model and theory 

In this study, we examine the dynamics of a pair 
of equivalent harmonic oscillators connected by a 
weak spring. The parameters that specify our system 
are as follows: coupling constant ( 0);V ≠  
eigenfrequency iω   of the oscillator  ( 1, 2)i =  
when there is no friction; the friction coefficient .iγ  
Also, a periodic external force with a frequency ω  
is assumed to act on the oscillator 1. The stationary 
solutions can be expressed in the form of 
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The analytical expressions for the complex 
amplitude 1c  and 2c  near the resonant frequency 
can be expressed in the form of the Fano and Lorentz 
formulae, respectively: 
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The explicit expressions for the resonance frequency 
R
iω , resonance width iΓ , Fano parameter iq , and 

ς  and σ  are given in Ref. [6]. These expressions 
can be applicable for the case where the 
eigenfrequencies of the two oscillators are not 
degenerate. When they are degenerate, different 
calculation methods are required.  

We first used perturbation theory to determine 
the eigen-frequencies split by the interaction V for 
two non-friction equivalent oscillators, and then used 
those frequencies to calculate the resonance profile. 
For this case, the Fano parameter is also generally 
represented by a complex number. 
 

 



 

3. Results and discussions  

Figure 1 (solid line) shows the amplitudes 
calculated for 1 2 1 20.01,   1.0γ γ ω ω= = = =  and 

0.1.V =  The degenerated eigenfrequency 1ω  is 
split into ( )1 1/ 2 1.10Vω ω ω+ = + = and 1ω ω− =  

( )1/ 2 0.90V ω− = by interaction V . For the 
oscillator 1, the amplitude 1c  has asymmetric 

profiles around ω±  but does not become zero. 
These asymmetric profiles can be described by a 
Fano formula with a complex Fano parameter. We 
can calculate the resonance frequencies and widths 
and Fano parameters around ω±  by using our 
formulae. The calculated values are as follows: 

0.01,  −Γ =  0.01,+Γ =   0.05,ω−∆ = −  ω+∆ =
0.05,  q− =  5.1 1.0 ,i− −   4.9 1.0 .q i+ = −  The 
approximated result for 1c  is compared with the 
exact solution in Fig. 1(a) (dotted lines). It can be 
seen that the two split peaks are well reproduced by 
the Fano formula with a complex Fano parameter. 
Similarly, the approximated result for 2c  is shown 
in Fig. 1(b). The widths of the resonance peaks and 
the resonance frequencies have the same value in 

1c  and 2c . However, the values in the frequency 
region between the peaks is smaller in 1c  because 
the peaks in 1c  are due to the Fano resonance, 
whereas the peaks in 2c  are due to the Lorentz 
resonance. 

The system examined in the present paper is 
very simple but rich in the physical content of 
resonance. Our formulas are not only helpful for 
understanding Fano resonance in this system but is 
also expected to be useful in considering other 
physical systems, because the Fano resonances are 
one of the general wave phenomena. In particular, 
these are expected to be useful for controlling the 
line shape of Fano resonance. 
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Fig. 1 The amplitudes of the first oscillator (a) and 
second one (b), which are calculated for 

1 2 1 20.01,  1.0,γ γ ω ω= = = =  and 0.1V = . The 
solid lines represent the numerically calculated 
values, whereas the dotted lines represent the 
analytically calculated values.  
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