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1. Introduction 

Elastic constants are one of the most basic 
physical quantities in material science and 
solid-state physics because they reflect the atomic 
bonding of the material and are essential parameters 
in designing structures. Resonant ultrasound 
spectroscopy (RUS) has been recognized as a 
method for measuring elastic constants [1-3]. In 
principle, it allows us to measure all independent 
elastic constants with a single small specimen, 
which is an advantage over other methods requiring 
multiple specimens according to crystal symmetry, 
such as the pulse-echo method. In the RUS analysis, 
we first calculate the theoretical resonant 
frequencies with the initial guess for elastic 
constants and compare them to the measured 
resonant frequencies. We then inversely determine 
the set of the elastic constants that minimizes the 
difference between calculated and measured 
resonant frequencies. To perform the inverse 
calculation appropriately, we need to find a good 
initial set of elastic constants, otherwise we will fail 
to make the correct mode identification and the 
resultant elastic constants will be physically 
meaningless. However, this task is never 
straightforward and requires many trial and error 
calculations. This is a serious and unsolved problem 
with the RUS method. 

In this study, we propose a strategy to predict the 
initial values using machine learning, especially 
deep learning, which has achieved outstanding 
performance in the field of image recognition [3]. 
We utilize this image recognition accuracy of deep 
learning for predicting the initial values in RUS. 

2. Method 

2.1) Dataset 

We convert resonance frequencies into 

monochrome images for utilizing convolutional 

neural network image analysis. Figure 1 shows the 

schematic of the imaging process we originally 

developed. The product of the square of the 

resonance frequency and the mass density 

corresponds to the eigenvalue of the free vibrational 

eigenstate of the specimen, and this value reflects 

the elastic constants of the material. Therefore, we 

use this value to create the image. We typically use 

~100 resonance frequencies to inversely determine 

the elastic constants in the actual RUS experiment. 

Therefore, we use the first 100 eigenmodes for 

making the dataset images. However, it is difficult 

to measure all 100 resonant modes without any lack 

because of the noise of the experimental system. To 

consider this, we randomly involved the missing 

resonant modes up to three in the dataset images. 

The imaging procedure takes the following process. 
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Fig. 1 Schematic diagram of creating the 

monochrome dataset image from resonance 

frequencies of a material. (a) Resonance 

frequency spectrum. fn denotes the n-th 

resonance mode. (b) Differences of squares 

of adjacent resonance frequencies 

multiplied by the mass density r. (c) 

Arrange them in a spiral manner and create 

a 10×10 pixels image. 
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First, we take the differences between each 

eigenvalue. Second, we arrange them in a spiral 

manner and create a 100-pixels, 16-bit monochrome 

image. We here only consider cubic symmetry 

materials in the training dataset for simplicity. We 

used 29 materials for training the network. We fixed 

the specimen dimensions to be 3×4×5 mm3 in this 

study. We computed resonance frequencies using 

the Ritz method with basis functions consisting of 

the product of normalized Legendre polynomials 

with the maximum orders of 24. 
2.2) Network architecture and prediction 
method 

Figure 2 shows the schematic diagram of the 
network architecture developed in this study. 
Sixteen filters of size 3×3 are used for the first two 
convolution layers, and thirty-two filters of size 3×3 
with a stride of 2 are used for the third convolution 
layer. The batch normalization layer and rectified 
linear unit layer follow each convolution layer. 
Finally, the classification probabilities are output by 
inserting the fully connected layer and the softmax 
layer. 

We predict the elastic constants by multiplying 
each class probability and corresponding elastic 
constants and taking a summation. 

3. Results and discussion 

To check the reliability of our proposed method, 
we made test images generated by elastic constants 
as shown in Table 1, which we did not include in 
the dataset, and predicted their elastic constants by 
the method. We included missing modes in the test 
image. The image with no missing mode showed 
the smallest deviation, and all elastic constants, 
except for C44, and the Poisson ratio were within 
2% of the true value. The accuracy of the 
predictions deteriorated with increasing the number 
of missing modes. These deviations result from the 
training data mismatch due to increased missing 

combinations. However, the Poisson ratio was close 
to the true value in all missing numbers. 
4. Conclusion 

We proposed the strategy to predict the initial 

values of elastic constants for the inverse calculation 

in RUS analysis using deep learning. First, we 

prepared the dataset by converting the resonant 

frequencies of various materials into monochrome 

images and trained the network. Then, we predicted 

the elastic constants using images we did not include 

in the dataset. The predicted values of the image with 

no missing mode were close to the true values and 

predicted deviations deteriorated with increasing the 

missing number. We further investigate to improve the 

prediction accuracy. 
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Table 1  The upper rows show elastic 

constants Cij (GPa), Young’s modulus E 

(GPa), Bulk modulus B (GPa), and Poisson 

ratio . The lower rows show the error with 

the true value (percent). 

C11
C12 C44missing

True 

Predict 

240 130 30

E B 

149 167 0.35

238 129 340

‒ 1 ‒ 1 13

147 165 0.35

‒ 1 ‒ 1 0

231 124 321

‒ 4 ‒ 5 7

145 160 0.35

‒ 3 ‒ 4 0

226 121 332

‒  6 ‒ 7 10

142 156 0.35

‒ 5 ‒ 7 0

227 121 323

‒  5 ‒ 7 7

142 156 0.35

‒ 5 ‒ 7 0
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Fig. 2  Deep learning network architecture and prediction method for the elastic constants. 
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