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1. Introduction 

Optical resolution photoacoustic microscopy 
(OR-PAM) has been developed to visualize 
microvascular with high spatial resolution. In 
general, the OR-PAM system requires to scan the 
target point-by-point by moving the opt-acoustic 
probe in two orthogonal directions. In the early 
development of OR-PAM, the scanning was done 
using linear stages, but the linear scanning had a 
limited imaging speed. To improve the system, later 
studies have investigated the utilization of micro-
electromechanical system (MEMS) mirrors that 
translates the linear movement into the rotational 
movement and thus might increase the imaging 
speed of OR-PAM. A study used a combination of 
single direction MEMS and linear stage1), while 
another group developed a dual-direction MEMS2). 
In addition, a polygon mirror was employed as 
substitute to the MEMS3). Those attempts have 
proven the efficacy of the MEMS in improving the 
speed of the OR-PAM, however the improved speed 
is still in a range of 8 – 400 seconds for 1 × 1 cm2, 
which is insufficient to visualize temporal changes 
such as intra-cellular biochemical interactions and 
minute hemodynamics.  

A potential solution is reducing the number of 
sampling point, in addition to using the MEMSs’ fast 
scanning technique, and decreasing the acquisition 
time. To do so, an emerging technique called 
compressed sensing (CS) may be used to reconstruct 
the full resolution image data from the under 
sampled scanning point. This study investigates the 
applicability of CS in an OR-PAM system equipped 
with a single-direction MEMS mirror and a single-
direction linear stage by simulating an under-
sampling condition. 

 

2. Material and Methods 

2.1 Experiment setup and data acquisition  

The OR-PAM system comprised of a single-

axis waterproof MEMS (1A-WP-MEMS) and a 

linear stage1). The object was illuminated with 

focused laser (Wavelength: 532 nm, Pulse repetition 

frequency (PRF): 10 kHz), and the yielded 

photoacoustic signal was captured with an unfocused 

ultrasound (Center frequency: 50 MHz, Frequency 

sampling: 500 MS/s). 

A black-stained leaf skeleton phantom was 

chosen as the experiment object. The dimension of 

the imaging was a patch of 2 mm × 2 mm and a depth 

of 0.75 mm. The speed of the linear stage was 

dependent on the MEMS and pulse repetition 

frequency (PRF). Following this setup1), the linear 

stage speed was 62 μm/s  and able to obtain full 

resolution scanning in 32 seconds. 
 

2.2 Signal processing 

The acquired radio frequency data was band-
pass filtered (5 – 100 MHz) then Hilbert transformed 
(HT). The OR-PAM system requires distortion 
correction as the motion of the MEMS mirror 
introduces linear and non-linear distortions in the 
polar axis1). Once corrected, a Maximum Intensity 
Projection (MIP) image was obtained by 
normalizing and picking the maximum amplitude of 
each HT data. An illustration shown in Fig. 1 (a) and 
the yielded MIP image for ground-truth was shown 
in Fig. 1 (b).  

2.3 Sampling simulation 

A CS framework was devised to generate a 
full-resolution MIP image from an under-sampled 
dataset. Although the CS framework requires an 
acquisition dataset randomly sampled over the 2D 
imaging field, performing randomization was 
considered in obstructing the advantage of resonant 
movement of the MEMS. To achieve both minimum 
sampling and retain the resonant movement of 
MEMS, a simulation was done by increasing the 
speed of the linear stage.  

Considering the original linear stage speed 
was 62.5 μm/s , the simulated samplings were 
performed on 188 μm/s, 250 μm/s and 383 μm/s 
for 12.8 seconds. These speeds were approximately 
3, 4 and 6 times faster than the original. The under-
sampled data obtained from simulation was shown 
in Fig. 1 (c – e). These data then transferred into the 
CS reconstruction that is described in the next 
section. 
 

2.4 Reconstruction 

 Consider a reconstruction of a full resolution 

MIP image 𝑀 ∈ ℝ𝑚×𝑛  from an obtained under-

sampled data 𝑌 ∈ ℝ𝑝×1  with 𝑝 ≪ 𝑚𝑛 . To match 

the dimension, a vectorized 𝑀 ∈ ℝ𝑚𝑛×1 was used 



instead. The process of a CS reconstruction was to 

iteratively estimate 𝑀  closer to 𝑌  with a prior 

knowledge on the sparsity of 𝑀. To achieve the goal, 

𝑌  was modeled as sampling 𝑀  with pattern 𝐶 ∈
ℤ𝑝×𝑚𝑛 , i.e., 𝑌 = 𝐶𝑀 . Then, an Inverse Discrete 

Cosine Transform (IDCT) Ψ ∈ ℝ𝑚𝑛×𝑚𝑛 was used 

to obtain 𝑀  from its sparse representation 𝑋 ∈
ℝ𝑚𝑛×1 , i.e., 𝑀 = Ψ𝑋 . Finally, the reconstruction 

algorithm can be represented in the following 

equation,  
 min

𝑋
‖𝐶Ψ𝑋 − 𝑌‖2

2 + ‖𝑋‖1  (1) 

A Sub-gradient algorithm was utilized to solve 
Equation 1. The obtained reconstructed MIP image 
then distortion corrected before evaluation. 
Evaluation was done using Structural Similarity 
(SSIM)4) and Mean Squared Error (MSE) against the 
ground-truth.  

 

3. Results and discussion 

The reconstructed full resolution images were 

shown in Fig. 1 (f – h). The yielded images were 

similar with the ground-truth, implying the success 

of the algorithm to reconstruct the data. Nevertheless, 

artifacts still existed in some parts of the images. 

Structurally, the artifact was similar to the scanning 

pattern. This suggests that the artifact might be 

originated from the scanning pattern. 

 A quantitative evaluation was shown in 

Table 1. The best and worst performance was 

achieved by the speed 383 μm/s  and 250 μm/s , 

respectively. With simulation that allows backward 

scanning for more scanning points, increasing speed 

should be associated with increasing performance. 

However, there exist speeds (e.g., 250 μm/s ) that 

had the same path while scanning backward. This 

causing in unimproved scanning points, thus limits 

the reconstruction algorithm and should be avoided. 
The current study utilized Sub-gradient 

algorithm without considering the undifferentiable 

properties of the Equation 1. This motivates further 

investigation to different algorithm that able to 

overcome this limitation. In addition, an 

identification of the origin of the artifact might help 

in guiding to a better problem formulation, rather 

than relying only on sparsity. In the future, it is 

interesting to modify Equation 1 to suppress the 

artifact. 

4. Conclusion  

In this paper, the applicability of CS 

framework on OR-PAM with 1-axis MEMS and a 

linear stage had investigated. Despite of under 

controlled simulation, the experiment results showed 

positive potentials of the CS implementation in the 

real system that will significantly increase the 

imaging acquisition time.  
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Table 1. SSIM and MSE for different stage speeds compared 

to ground-truth. 

 188 μm/s 250 μm/s 383 μm/s 
SSIM 0.486 0.253 0.642 

MSE 0.009 0.026 0.002 
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Fig. 1. (a) Acquisition in polar coordinate. (b) Ground-truth. (c-h) Under sampling simulation on various linear stage 

speed for 12.8 seconds. (c, d, e) Sampling pattern. (f, g, h) reconstructed MIP after minimization and distortion correction. 
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