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1. Introduction 

Waves can reflect and transmit at the boundaries 
of two homogenous media. The laws of reflection 
and transmission are calculated from wave equations 
and boundary conditions based on continuous 
physical parameters. For example, the Fresnel 
equation in optics can be derived from the continuity 
of the tangential components of the electric and 
magnetic fields at boundaries. The above discussion 
applies to the case of spatial boundaries. What 
happens to waves at temporal boundaries? In fact, 
waves also reflect and transmit at temporal 
boundaries. To make temporal boundaries, however, 
the physical parameters of a media should be 
changed suddenly (on a scale much faster than the 
time for propagation through the region of study). 
Because of the difficulty of making such clear 
temporal boundaries, there are few experiments to 
directly investigate the reflected waves at temporal 
boundaries. An experiment with temporal 
boundaries on a water surface using a change in the 
effective gravitational constant has been reported [1]. 

Here we realize imaging of reflection and 
transmission at temporal boundaries for the case of a 
simple and readily visible one-dimensional system. 
The key idea is to make the wave speed change 
suddenly by use of a Shive wave machine [2]. This 
allows the investigation of the wave propagation 
with the naked eye or by use of a camera, using a 
system constructed with inexpensive mechanical 
parts. 
 

2. Theories  

2.1 Wave machine theory 

Shive wave machines are characterized by the 
moment of inertia of each rod 𝐼 and the torsional 
spring constant 𝜅  [3]. It is useful to consider a 
simple analogy, i.e., the equation of motion of the 𝑠-
th unit in a conventional one-dimensional mass-
spring model (see Fig. 1): 

𝑚
𝑑2𝑥𝑠
𝑑𝑡2

= 𝑘(𝑥𝑠+1 + 𝑥𝑠−1 − 2𝑥𝑠), (1) 

where 𝑚 is the mass, 𝑘 is the spring constant, and 
𝑥𝑠  is the displacement of the 𝑠 -th mass. On the 
other hand, the equation of motion of the 𝑠-th unit 

in a three-wire type Shive wave machine is governed 
by the equation 

𝐼
𝑑2𝜙𝑠

𝑑𝑡2
= 𝜅(𝜙𝑠+1 + 𝜙𝑠−1 − 2𝜙𝑠), (2) 

where 𝜅 = 2𝑇𝑑2 𝑎⁄  is the torsional spring constant, 
𝑇 is a tension of the wires, 𝑑 is the distance from 
the center of the rods to the wires, 𝑎 is the lattice 
constant, and 𝜙𝑠 is the angle of the 𝑠-th rod from 
the equilibrium position. One can appreciate the 
exact correspondence with the one-dimensional 
mass-spring model. These models are both described 
by a discretized one-dimensional wave equation. 

2.2 Generalized one-dimensional wave equation 

The one-dimensional wave equation for a 
continuous string includes only two physical 
parameters, i.e., density 𝜌  and tension 𝑇 of the 
string. Let us consider the case when both parameters 
𝜌 and 𝑇 depend not only on the position but also 
on the time. The generalized one-dimensional wave 
equation becomes 

𝜕

𝜕𝑡
(𝜌

𝜕𝑢

𝜕𝑡
) =

𝜕

𝜕𝑥
(𝑇

𝜕𝑢

𝜕𝑥
), (3) 

where 𝑢(𝑥, 𝑡) is displacement. The left-hand side 
contains a time-derivative of the momentum density, 
and the right-hand side contains a spatial derivative 
of the stress. 

2.3 Reflection and transmission coefficients at a 
spatial boundary 

Before considering a temporal boundary, let us 
consider the familiar spatial boundary. Since 
displacement and stress must be continuous at the 
boundary between the two regions, we can obtain the                                             
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Fig. 1 The correspondence between a wave machine 

and a mass-spring model. 



reflection and transmission coefficients from the 
following equation (3): 

𝑟space =
𝜌1𝑐1 − 𝜌2𝑐2
𝜌1𝑐1 + 𝜌2𝑐2

, (4) 

𝑡space =
2𝜌1𝑐1

𝜌1𝑐1 + 𝜌2𝑐2
, (5) 

where 𝑐𝑖 = √𝑇𝑖 𝜌𝑖⁄  is the wave velocity and 
subscript 𝑖 refers to region 1 or 2. On reflection the 
frequency is unchanged, and the total wave energy is 
conserved. 

2.4 Reflection and transmission coefficients at a 
temporal boundary 

Next, consider a temporal boundary. In this case, 
displacement and momentum must be continuous. 
we can get the reflection and transmission 
coefficients from equation (3) in the following form: 

𝑟time =
𝜌2𝑐2 − 𝜌1𝑐1

2𝜌2𝑐2
, (6) 

𝑡time =
𝜌1𝑐1 + 𝜌2𝑐2

2𝜌2𝑐2
. (7) 

On reflection the wavelength and wavenumber are 
unchanged, but the total wave energy is not 
conserved because of the changing medium. 

 

3. Experiment 

To realize wave reflection phenomena at a 
temporal boundary, we construct a Shive wave 
machine that uses 5 wires and 95 rods (Fig. 2). The 
central wire goes through the center of gravity of 
each rod and supports the rods. Two inside wires are 
arranged symmetrically about the center, which 
allows torsional motion to be transferred from rod to 
rod as the wave propagates. Two outside wires, with 
a similar function, are also arranged symmetrically, 
and can be pulled by a stepping motor controlled by 
a computer. The rods are square cross-section brass 
bars (320×6×6 mm) arranged with a 20-mm lattice 
constant. The motion of the wave machine is 
recorded by four cameras by means of a commercial 
motion-capture system (OptiTrack). 

   We have captured reflected waves at a temporal 

boundary. We have also realized a temporal 

antireflection layer [4]. 

 

4. Conclusion 

In conclusion, we demonstrate that it is possible 
to make a movie of a temporal boundary with a Shive 
wave machine and to image the reflection of the 

waves at such a boundary. In future, it should be 
possible to demonstrate the wave physics of time-
dependent media and space-time metamaterials, for 
example by involving phenomena such as 
amplification, wave shaping or frequency 
transformation [5]. 
 

 
Acknowledgment 

This work was supported by JSPS KAKENHI Grant 
Number 22H01930, 21H05020, and 19H05619. 
 

References 

1. V. Bacot, M. Labousse, A. Eddi, M. Fink, and E. 
Fort: Nat. Phys. 12 (2016) 972. 

2. J. N. Shive: Similarities in Wave Behavior (The 
Williams & Wilkins Co. Series, Baltimore, Md., 
1961). 

3. R. de la Madrid, A. Gonzalez, and G. M. Irwin: 
Am. J. Phys. 82 (2014) 1134. 

4. V. P. Pena, and N. Engheta: Optica 7 (2020) 323. 
5. C. Caloz, Z.-L. Deck-Leger: IEEE Trans. Anten. 

Propag. 68 (2020) 1569. 
 
 
 

 
Fig. 2 Photograph of the wave machine. 
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