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1. Introduction 

Cylindrical pipes are widely used in 
applications such as nuclear power plants and micro 
total analysis systems (µTAS). Nondestructive 
evaluation (NDE) of such pipes is therefore crucial. 
NDE as well as ultrasonic flowmeters can be used 
to characterize pipes filled with fluid. Guided wave 
propagating in hollow pipes was investigated 
theoretically by Gazis [1]. Modes of guided waves 
are classified as longitudinal [L(0,m)], flexural 
[F(n,m)], and torsional [T(0,m)], where 𝑛 and 𝑚 
are the circumferential and radial mode parameters, 
respectively. Nishino et al. investigated modal 
analysis of hollow cylindrical guided waves and 
proposed that the 𝑛-parameter of the T-mode was 
not limited to zero [e.g., T(1,m) or T(2,m)] [2]. 
More recently, there have been two ways of 
classification of modes of the guided waves. In this 
article, the author attempts to calculate the sound 
velocities of guided waves carefully and classify 
them. 

 
 
2. Theoretical results 

Figure 1 shows the theoretical model of a 
cylindrical pipe and its coordinate system 
(cylindrical coordinates). Analytical details are 
available in Ref. 3. The matrix equation is obtained 
from the boundary conditions of 𝑟 = 𝑎 and 𝑟 = 𝑏. 
The size of the matrix is 6 × 6 for a hollow pipe. 
The phase velocities of guided waves are calculated 
by the determinant of matrix, and displacements are 
calculated by the solution of the matrix equation. 

For 𝑛 = 0, the displacements of the pipe are 
in axial symmetry, and for 𝑛 = 1 , the 
displacements are in plane symmetry. When 𝑛 = 0, 

the matrix splits into two matrixes: the size of one 
is 4 × 4 for L-mode and the other’s is 2 × 2 for 
T-mode [1]. Therefore, L-mode and T-mode are 
separated completely. Figure 2 shows dispersion 
curves of L(0,m) and T(0,m). The outer and inner 
diameters of the pipe are 𝜙34 mm and 𝜙28 mm, 
respectively, and its sound velocities of longitudinal 
and transverse waves are 5790 m/s and 3100 m/s, 
respectively. Figure 3 shows the nearby 
intersection of L(0,4) and T(0,3). Markers indicated 

with (•) are the calculated results. Because the 
phase velocities of L-mode and T-mode are 
calculated by the different matrix equations, the 

 

 
 

Fig. 1 Theoretical model. 
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Fig. 2 Phase velocities of L-mode and F-mode. 

 

 
Fig. 3 Phase velocities around the intersection of 
L(0,4) and T(0,3). 



results are independent and intersect without 
influencing each other. 

Figure 4 shows the dispersion curves for 𝑛 =
1. For example, F(1,2) is named T(1,1) and is close 
to the sound velocity of transverse waves for 𝑓 →
∞ according to Ref. 2. However, the author cannot 
use T(1,m) in this article because F(1,2) and F(1,3) 
do not intersect and F(1,2) is close to F(1,1) for 
𝑓 → 2  MHz and F(1,3) is close to the sound 
velocity of transverse waves. F(1,6) and F(1,7), and 
F(1,8), F(1,9), and F(1,10) also do not intersect. In 
other words, the author is not able to find an 
intersect point in Fig. 4. Figure 5 shows the 
calculated phase velocities (•) of F(1,6) and F(1,7). 
They are close around 1.226 MHz, but because they 
do not intersect, the author is not able to index 
T(1,3) here. 

 
3. Discussions 

From Fig. 3, because L-mode and T-mode are 
separated clearly for 𝑛 = 0 , it is easy and 
reasonable to classify them. However, because 
F-mode and T-mode are not separated clearly, the 
author was not able to use the classification method 
in Ref. 2. 

Displacements of a guided wave are 
expressed as below [3]. 

𝑢!"#$%& = 𝐴(𝑟, 𝑛, 𝑘, , , ) cos 𝑛𝜃 cos(𝜔𝑡 − 𝑘𝑧) 
𝑢'
"#$%& = 𝐵(𝑟, 𝑛, 𝑘, , , ) sin 𝑛𝜃 cos(𝜔𝑡 − 𝑘𝑧) 
𝑢("#$%& = 𝐶(𝑟, 𝑛, 𝑘, , , ) cos 𝑛𝜃 sin(𝜔𝑡 − 𝑘𝑧) 

Here, 𝜔  is an angler frequency, 𝑘  is a wave 
number, 𝑡 is time, and 𝐴, 𝐵, 𝐶 are represented by 
using Bessel functions. 𝑢'

"#$%& = 0  and 𝑢!"#$%& =
𝐴𝑐𝑜𝑠	(𝜔𝑡 − 𝑘𝑧)  for 𝑛 = 0 , and this result is 
L-mode. However, 𝑢'

"#$%& ∝ sin	 𝜃  and 𝑢!"#$%& ∝
cos	 𝜃 for 𝑛 = 1, and there is no reason 𝑢'

"#$%& or 
𝑢!"#$%&  must be zero. Therefore, the author 
considers that the displacements were a mixture of 
𝑢'
"#$%&  and 𝑢!"#$%&  and T(n,m) cannot separate 

clearly from F(n,m) for 𝑛 > 0. 
Group velocity is calculated as 
𝑣) =
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Here 𝑉0  and 𝑉1  are phase velocities and those 
velocities must be selected in the same mode. 
Therefore, group velocities are affected by the 
classification of modes. To identify the mode of 
guided waves in experiments, group velocity is 
mainly used, so the classification of modes is 
important, and the author considers that the 
𝑛-parameter of the T-mode is limited to zero. 
 
4. Conclusions 
The author investigated dispersion curves of guided 
waves carefully and discussed their classification. 
Because this result of classification and shape of 
dispersion curves makes the difference of group 
velocities, the proposed classification method is 
significant. 
 
Acknowledgment 
This work was supported by JSPS KAKENHI 
Grant Number JP26390109. The author would like 
to thank Enago (www.enago.jp) for the English 
language review. 
 
References 
1. D. C. Gazis: Jpn. J. Acoust. Soc. Am. 31 (1959) 

568. 
2. H. Nishino et al.: Jpn. J. Appl. Phys. 40 (2001) 

364. 
3. H. Sato and H. Ogiso: Jpn. J. Appl. Phys. 49 

(2010) 07HC08. 

 

 
Fig. 4 Phase velocities of F-mode and T-mode. 

 

 
Fig. 5 Phase velocities around the closest point 
between F(1,6) and F(1,7). 
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