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1. Introduction 

As one of the second-generation ultrasound 

contrast agents (UCAs), phospholipid-shell 

ultrasound contrast agents have promising potential 

for various medical applications such as 

echocardiography, drug and gene delivery, 

sonoporation, and then has received much attention. 

Previous studies on the interaction between 

phospholipid-shell encapsulated microbubbles and 

ultrasound focused on the behavior of a single 

phospholipid-shell encapsulated microbubble. A 

better understanding of the propagation of the 

ultrasound in liquid containing multiple 

encapsulated microbubbles has been required to 

thoroughly utilize and apply UCAs.  

The novelty of this study is the inclusion of 

buckling and rupture of the phospholipid membrane 

[1] by incorporating the Marmottant-Gompertz 

model [2] into the multiple scale analysis based on 

two-phase flow model. As a result, a KdVB 

(Korteweg-de Vries-Burgers) equation as a weakly 

nonlinear wave equation for one-dimensional 

ultrasound in phospholipid-shell encapsulated 

bubbly liquid is successfully derived. Furthermore, 

the effect of bucking and rupture of phospholipid 

membrane on ultrasound propagation is investigated 

in detail. The result shows that, the characteristics of 

ultrasound propagation change with the initial 

surface tension, particularly near the transition of 

buckled-linear regime and the linear-ruptured regime 

of phospholipid-shell, where the first-order 

derivative and the second-order derivative of initial 

surface tension (i.e., surface elasticity and its first 

derivative) change rapidly. 

2. Problem statement 

Nonlinear propagation of an ultrasound in 
liquid containing multiple phospholipid-shell 
encapsulated microbubbles, which is characterized 
by buckling and rupture phenomenon, is investigated 
theoretically. The main assumptions are summarized 
as follows: (i) The liquid is slightly compressible; (ii) 
The initial flow velocities of gas and liquid phases 
are negligible; (iii) The number of bubbles is 
constant; (iv) Initially, bubble distribution are 
spatially uniform; (v) Bubble-bubble interaction, the 
mass transport across the bubble-liquid interface, the 
translation of bubbles, and drag force acting on 

bubbles, are neglected; (vi) The surface tension of 
shell obeys the Marmottant–Gompertz model [2].  

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 1 Schematic of the model. 

 

3. Basic equations 

The Marmottant–Gompertz model [2] is used 
to incorporate the behavior of the surface tension of 
the phospholipid-shell:  
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where σ∗ is the surface tension, σ𝑐
∗  is the surface 

tension for bare interface between air and liquid 

phase (e.g., σ𝑐
∗ = 0.072 [N/m]  for air-water 

interface), σ0
∗  initial surface tension, χ∗  shell 

elasticity, 𝑅∗  bubble radius, 𝑅0
∗  the initial radius, 

and 𝑅buck
∗  radius where the shell begins to buckle. 

Further, equation for balance of normal stresses 

across the bubble-liquid interface, modified by 

Marmottant et al. [1]:  
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where, 𝜇∗ is the liquid viscosity while κ s 
∗ is the shell 

dilatational viscosity derived for shells with a small 

but finite and constant thickness. 

Subsequently, Eq. (2) is combined with 

conservation equations of mass and momentum [3], 

modified Rayleigh–Plesset equation for spherical 

oscillations of bubbles in slightly compressible 

liquid [1], equation of state, and with others. Based 

on the multiple scale analysis, the set of equations is 

reduced to simplified set by using pertubation 

expansion. That is, for weakly nonlinear problems, 

the nonlinear effect becomes apparent at a large 
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distance from the sound source relative to the 

wavelength, denoted far-field. The far-field (i.e., the 

temporal and spatial scales of O(1/𝜖)) is described as, 

                                 𝑡1 = 𝜖𝑡,     𝑥1 = 𝜖𝑥,         (3) 

where 𝜖 is a nondimensional wave amplitude with 

the assumption (0 < 𝜖 ≪ 1). 

4. Result 

The Marmottant–Gompertz surface tension is 

expanded as, 

σ∗ =  σ0
∗  [1 + ϵ𝑁1𝑅1 + ϵ2(𝑁22𝑅2 + 𝑁21𝑅1

2)],  (4) 

where explicit forms of N1, N22 and N21 are, 
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Through the linearization of modified 

Rayleigh-Plesset equation, the eigenfrequency of the 

bubble is obtained:  
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where 𝜌L0
∗ , 𝑝G0

∗ , and 𝛾  are unperturbed liquid 

density, initial gas pressure, and polytropic exponent 

respectively. 

 

Finally, the KdVB equation is derived : 
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where Π1, Π2, and Π3 represent nonlinear effect, 

attenuation effect, and dispersion effect, 

respectively; 𝜏 is time variable and 𝜉 is space 

variable from variable transformation: 

        𝜏 ≡  𝜖𝑡,    ξ ≡ 𝑥 − (𝑣p + 𝜖Π0 )𝑡,     (9) 

where the phase velocity 𝑣p  and advection effect 

Π0 are given by 
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Where 𝛼0 is the initial void fraction, virtual mass 

coefficient 𝛽1  = 0.5 is used for spherical bubble 

case, and 𝑈∗ is typical propagation speed. 

 

The explicit form of nonlinear coefficient is, 
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where, the expressions of 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are 

identical with their counterparts in  our previous 

study for uncoated bubble [3]. Since there is a shift 

of the eigenfrequency 𝜔B
∗  to higher value due to the 

initial elastic coefficient (i.e., σ0
∗ 𝑁1) , the values of 

𝑘1, 𝑘2, 𝑘3 and 𝑘4 are different from those for free 

bubble case. The expression of 𝑘5 , however, is 

different from its counterpart and is given by 
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where 𝑝G0 ≡  𝑝G0
∗ (𝜌L0

∗ 𝑈∗2)⁄ ≡ O (1) is 

nondimensional pressure for the gas phase. 

The expression of 𝑘5 shows that there is also 

the contribution of 𝑁21. In the transition regime of 

buckled state to elastic state, σ0
∗ 𝑁1 change rapidly 

from zero to 𝜒∗ (i.e., σ0
∗ 𝑁21  is positive) while in 

the transition regime of elastic state to ruptured state, 

σ0
∗ 𝑁1  change rapidly from 𝜒∗ back to zero (i.e., 

σ0
∗ 𝑁21  is negative). These rapid rates of change 

result in the dominance of σ0
∗ 𝑁21  in nonlinear 

coefficient.  

 
5. Summary 

A KdVB equation for nonlinear propagation of 
ultrasound in liquid containing multiple 
phospholipid-shell encapsulated bubbles is derived. 
The buckling and rupture phenomenon of the shell is 
incorporated into the study by using Marmottant-
Gompertz surface tension model. The result shows 
that the buckling and rupture phenomenon affect the 
nonlinear coefficient through the increase of 
eigenfrequency caused by elastic coefficient. 
Moreover, the behavior of nonlinear term is also 
significantly affected by the rate of change of elastic 
coefficient. A quantitative discussion will be 
provided in a presentation. 
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