Mechanical Q factor dependence on Zr / Ti ratio of sputter-grown PZT epitaxial thin films

Yuki Shimizu^{1,2‡} and Takahiko Yanagitani^{1,2,3,4} (¹Waseda Univ.; ²ZAIKEN; ³JST-CREST; ⁴JST-FOREST)

1. Introduction

 $Pb(Zr_xTi_{1-x})O_3$ (PZT) bulk ceramics are widely used for ultrasonic transducers and actuators because of their high piezoelectricity. On the other hand, PZT single crystalline thin films are attractive for GHz band thin-film resonator applications because of their expected higher mechanical Q factor (Q_m) than polycrystalline films. However, there are few reports on the Q_m of PZT single crystal thin film resonators.

Our group previously proposed a method to evaluate Q_m of the piezoelectric film without removing the substrate.¹ This method can determine Q_m of piezoelectric thin films grown on the substrates with a difficulty of etching, such as SrTiO₃.

In this study, Q_m of sputter-grown PZT epitaxial films grown on La-SrTiO₃ substrates was measured by using this method. The dependence of Q_m of Pb(Zr_xTi_{1-x})O₃ films on Zr / Ti ratio was investigated.

2. Principle of evaluating Q_m of the thin film with HBAR structure

 Q_m of the entire HBAR (Q_{entire}) is affected by two factors: Q_m of the substrate (Q_{sub}) and Q_m of the thin film (Q_{piezo}). Since the mass of the film layer is much smaller than the mass of the substrate in the typical HBAR, Q_{entire} is nearly equal to the Q_{sub} . Nevertheless, Q_{piezo} has a more significant influence on Q_{entire} especially near the thickness resonant frequency of the thin film.

When Q_{piezo} is lower than Q_{sub} , the acoustic damping of the piezoelectric thin film results in the decrease of overall Q_{entire} in the vicinity of the resonant frequency of the thin films. The decrease in Q_{entire} near the resonant frequency of the thin film is determined by the ratio of Q_{sub} to Q_{piezo} . Therefore, Q_{piezo} can be estimated by using Q_{sub} as a reference.

e-mail:

3. Extraction of mechanical Q factor of PZT

Epitaxial (001) Pb(Zr_xTi_{1-x})O₃ films with different Zr / Ti ratio (*x*=0, 0.2, 0.4, 0.5, 0.6) were grown on conductive (100) La-SrTiO₃ single crystal substrate by RF magnetron sputtering. Ten mol% PbO rich PZT powder sputtering target is used to maintain the stoichiometry of PZT films.²

The real part of impedance (Z_{real}) was measured by a network analyzer (E5071C, Keysight Technologies) with various top electrode areas. Q_{entire} was acquired from multiple resonance peaks in the Z_{real} . Q_{piezo} was extracted by fitting the theoretical Q_{entire} to the experimental Q_{entire} in the vicinity of the resonant frequency of the films. Theoretical Q_{entire} was simulated by using Mason's equivalent circuit model.

Figure 1 shows the typical Q_{entire} of $Pb(Zr_xTi_{1-x})O_3 / La-SrTiO_3$ HBAR structure when x = 0. In this case, Q_m of the PbTiO_3 films was estimated to be 380.

Fig. 1 Q_m factor of PbTiO₃ / La-SrTiO₃ HBAR structure and Q_m of PbTiO₃ thin film

4. Results and discussions

The relationship between Q_m of Pb(Zr_xTi_{1-x})O₃ films and Zr concentration is shown in **Fig. 2**. In this Q_m measurement method, the evaluated Q_{piezo} has an electrode area dependence.³ The electrode area dependence of Q_m of Pb(Zr_xTi_{1-x})O₃, as shown in **Fig. 3**, should be caused by the leakage of acoustic waves in the lateral direction as surface acoustic waves. In this measurement, the highest value among

^{1.} clearwater@asagi.waseda.jp

^{2.} yanagitani@waseda.jp

the extracted Q_m is assumed to be the most accurate value owing to the minimum lateral acoustic wave leakage effect. As shown in Fig. 2, Q_m of Pb(Zr_xTi_{1-x})O₃ films decreases with increasing Zr concentration. Therefore, PbTiO₃ film is expected to possess the highest Q_m . In addition, we previously found that PbTiO₃ films exhibit the highest k_t^2 for sputter-grown PZT epitaxial thin films.⁴ the product of k_t^2 and Q (k_t^2 ·Q), known as the figure of merit (FoM) of BAW resonator, indicates that PbTiO₃ film is the most suitable for resonator applications among the PZT material (**Fig. 4**).

According to a previous report of our group, sputter-grown Pb(Zr_xTi_{1-x})O₃ thin films with all Zr concentrations show the tetragonal structure and do not have morphotropic phase boundary (MPB), which is identified around x = 0.53 in bulk PZT.⁴ However, a characteristically high Q_m of 400 was observed around MPB (x = 0.5).

Fig. 2 The relationship between Q_m of $Pb(Zr_xTi_{1-x})O_3$ films and Zr concentration

Fig. 3 The relationship between Q_m of $Pb(Zr_xTi_{1-x})O_3$ films and electrode area

Fig. 4 $k_t^2 \cdot Q$ and k_t^2 of Pb(Zr_xTi_{1-x})O₃ films as a function of Zr concentration x

5. Conclusion

 Q_m of sputter-grown Pb(Zr_xTi_{1-x})O₃ epitaxial thin films were evaluated at various Zr concentration (x = 0, 0.2, 0.4, 0.5, 0.6). The results show that Q_m of Pb(Zr_xTi_{1-x})O₃ films decreases with increasing Zr concentration. When x = 0, Q_m of PbTiO₃ thin film exhibit 380, and $k_t^2 \cdot Q$ exceeds 100. Therefore, PbTiO₃ epitaxial thin films are potential candidates for filter applications. On the other hand, a characteristically high Q_m of 400 was observed at x = 0.5, which is near the MPB of bulk PZT.

Acknowledgment

This work was supported by JST CREST (No. JPMJCR20Q1), JST FOREST, and KAKENHI (Grant-in-Aid for Scientific Research B, No.19H02202, No.21K18734).

References

- 1. S. Kinoshita and T. Yanagitani, Proc. IEEE Ultrason. Symp. 299 (2019).
- K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, J. Appl. Phys. 60 (1) 361 (1986).
- 3. N. Iwata, S. Kinoshita, and T. Yanagitani, Proc. IEEE Ultrason. Symp. 2095 (2020).
- R. Noda, T. Shimidzu, K. Wasa, and T. Yanagitani, Proc. IEEE Ultrason. Symp. 13 (2019).