Characteristics of surface acoustic wave propulsion system at 10 MHz

Ryo Tanimura ^{1‡}, Deqing Kong ¹, Minoru Kuribayashi Kurosawa², and Manabu Aoyagi ¹ (¹Muroran Institute of Technology; ²Tokyo Institute of Technology)

1. Introduction

Swimmer using an ultrasonic transducer is easy to simple structure and small size, because the propulsion force of the swimmer can be obtained simply by a high frequency transducer^[1-3]. In this research, characteristics of the propulsion system are reported in water using the surface acoustic wave(SAW) transducer.

2. Design

2.1 SAW transducer

The SAW transducer (128°Y-cut Lithium niobate) used in this research is shown in **Fig. 1**. The dimensions of the transducer were 16 mm in depth and 14 mm in width. The parameters of IDT used to excite the SAW is shown in **Table I**.

2.2 Admittance characteristics

Admittance characteristics were measured using an impedance analyzer in air. The measurement results and the calculation results derived from the IDT equivalent circuit are shown in **Fig. 2**. The measured and calculated impedance characteristics have a good fitting. The conductance of the SAW transducer

Fig. 1 SAW transducer.

Ta	ble	I IDT	param	leters
----	-----	-------	-------	--------

Frequency [MHz]	9.61	
Aperture [mm]	9.0	
Strip-electrode width [µm]	100	
Strip-electrode gap [µm]	100	
Strip-electrode pairs	20	

^{21043044@}mmm.muroran-it.ac.jp

Fig. 2 Admittance characteristics.

in air and calculation result were 11.4 and 11.3 mS respectively.

3. Sound pressure

To investigate the force for the propulsion system, the sound pressure of the SAW transducer was measured with a hydrophone. Sound pressure was measured vertically to the strip-electrode. The dimensions of the transducer were 16 mm in width and the part of IDT was $4\sim12$ mm. The sound pressure was measured near the transducer and 5mm from the transducer. Sound pressure was measured at 1 mm spot. The measurement results obtained at 5 V_{pp} and 9.61 MHz are shown in **Fig. 3**. Higher sound pressure was centralized in the IDT area. At 5 mm area, the highest sound pressure was consistent with the theory.

4. Particle velocity

The particle velocity was measured by the SAW transducer. The SAW transducer was driven at a driving frequency of 9.61 MHz and an input voltage of $8.0 \sim 27.6 V_{pp}$ with particles in water. The motion of the particles was captured by a high-speed camera, and the particle velocity was analyzed. The particle velocity measurement results obtained at various driving voltages and the maximum particle velocity versus input voltages were shown in **Figs. 4** and **5**, respectively. For an input voltage of 27.6 V_{pp}, the maximum particle velocity was 69.1 mm/s.

Fig. 4 Particle velocity of SAW transducer by diverse voltages in water.

Fig. 5 Maximum particle velocity of by diverse voltages in water.

5. Propulsion

To investigate the force for the propulsion system, the propulsion of the SAW transducer was measured with a force sensor. The propulsion measurement results obtained at various driving voltages are shown in **Fig. 6**. For an input voltage of 72.5 V_{pp} , the highest propulsion of 3.6 mN was measured in water.

Fig. 6 Zero speed propulsion.

6. Conclusion

In this study, the characteristics of the SAW propulsion system at 9.61 MHz were evaluated. The admittance characteristics, sound pressure, particle velocity, and zero-speed propulsion of the SAW transducer were measured and reported.

Acknowledgment

This work was supported by JSPS KAKENHI grant (20K20217).

References

- 1. D. Kong et al., Sens. Actuators A Phys., 309,111943, 2020.
- 2. D. Kong et al., J. Acoust. Soc. Am. 150, 1157,2021.
- 3. Ryo Tanimura et al Jpn. J. Appl. Phys. 61, SG1038, 2022.