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1. Introduction 

    Efficiency optimization is a core requirement 

towards an optimal performance of Ultrasonic 

motors (USM). Efficient operation can reduce 

over-heating, prolong operation time, and extend 

the motor’s lifetime. However, a single output 

controller (driving frequency) limits the motor’s 

efficiency. For efficient tracking performance, 

multi-output control is proposed. This work focuses 

on efficient speed control through two control 

outputs; driving frequency and load torque. The 

proposed architecture can be further extended to 

additional control objectives and control outputs in 

future studies. This work introduces deep 

reinforcement learning controller for optimal 

nonlinear model-free efficient speed control. 

 

2. USM Characterization 

    Driving voltage frequency and load torque are 

two main variables that control the USM 

performance, as shown in Fig. 1. Decreasing the 

driving frequency increases the speed and 

efficiency nonlinearly until sudden reduction 

around resonance due to the pull-out phenomena. 

Increasing load torque reduces maximum speed but 

increase driving efficiency due to increased output 

power. Yet, there is an optimal torque beyond which 

efficiency drops. By simultaneous control of 

frequency and torque, desired speed can be realized 

with maximum efficiency. 

 

 
Fig. 1 Simulated USM speed response 

3. DRL USM Efficient Speed Control 

    In our earlier work [1], deep reinforcement 

learning (DRL) was proposed for speed control of 

USM under varying torque. RL aims towards 

finding an optimal policy (π) that maps state 𝑠𝑡 to 

optimal action 𝑎𝑡 that maximizes a sum of future 

rewards discounted rewards with factor  𝛾  [2]. 

Starting at state 𝑠 and taking action 𝑎, a Q-value is 

an expectation of this sum, as in Eq. 1.  

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{∑ 𝛾𝑡𝑅𝑡
∞
𝑡=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}  (1) 

    The Soft Actor-Critic (SAC) algorithm [3] is 

utilized as in our earlier work [1]. For USM 

efficient speed control, we redefine our input state, 

output action, and reward function to fulfill the 

needs of our modified objective. The USM efficient 

speed control problem is formulated as a Markov 

decision process (MDP), as in Fig. 2. The same 

Markovian input state is used as in [1]. This state 

includes driving frequency (𝑓𝑡), temperature (𝑇𝑡), 

load torque (𝜏𝑡), current speed (𝑣𝑟𝑡
), and target 

speed (𝑣𝑡𝑎𝑟𝑔𝑡
). The agent (controller) can infer the 

driving efficiency given the other state variables. 

The multi-output action is an update step to the 

current driving frequency (𝑓𝑡+1 = 𝑓𝑡 + Δ𝑓) and the 

current load torque (𝜏𝑡+1 = 𝜏𝑡 + Δ𝜏). Finally, the 

reward function should be defined to meet the 

requirement of speed tracking and efficiency 

optimization. The reward is defined as in Eq. 2. 

First, the root absolute speed error is penalized to 

optimize speed tracking objective. Second, the 

driving efficiency (ηt) is rewarded with a weight 

(wη). Finally, the absolute action is penalized with 

weight (wa). Tuning these weights is necessary for 

reaching a compromise between minimizing speed 

error and maximizing efficiency.  

rt+1 = −√|verrt
| + wηηt − wa|at| (2) 

4. Results  

    The proposed controller was trained and 

evaluated under a simulated environment of USM 

as in [1]. Experimental validation is currently being 

researched. In addition to speed modeling in [1], the 

induced current ( 𝐼 ) is calculated knowing the 



vibration amplitude (𝑤), voltage amplitude (𝑉), 

 
Fig. 2 MDP representation for USM efficient speed 

control 

 

damped capacitance (𝐶𝑑), and coupling factor (Θ) 

as in Eq. 3. Given 𝐼, the input power (𝐼𝑉) and 

driving efficiency (𝑝𝑜𝑢𝑡/𝑝𝑖𝑛) can be calculated.  

𝐼 = 𝐶𝑑�̇� + Θ�̇� (3) 

    The agent training procedure was the same as 

[1]. Following agent training, it was evaluated by 

commanding a sinusoidal target speed varying 

between [0-300] rpm. During speed tracking, 

driving frequency and load torque are controlled as 

simultaneously in Fig. 3. The agent could realize 

perfect tracking and the speed error was minimized. 

Additionally, the driving efficiency was maximized 

whenever possible. The efficiency drops to zero in 

two cases; zero rotor speed and zero load torque 

(for high target speeds). The agent outputted 

optimal action that corresponded to changes in the 

driving frequency and load torque.  

 
Fig. 3 Efficient speed tracking of a sinusoidal 

target speed 

 

    To further validate the effectiveness of the 

proposed controller, we plotted the DRL agent 

performance curve against the USM best 

performance as in Fig. 4. First, we sampled 

multiple operation points of USM by sweeping 

over load torque and driving frequency. Then, 

samples that resulted in maximum efficiency 

were identified. Within the target speed range, 

the DRL agent realized a comparable maximum 

efficiency. For higher speeds, the driving 

frequency and load torque decreased. Maximum 

efficiency was realized at a moderate load torque 

(0.5 N.m) and target speed (150 rpm). 

Additionally, excessive load torques resulted in 

reduced efficiencies and may damage the motor. 

 
Fig. 4 DRL efficient speed tracking curve 

 

5. Conclusion 

In this work, DRL was proposed for efficient 

speed control of USM. The simulation results 

showed that DRL could track desired speeds while 

maximizing driving efficiency. Future research will 

focus on experimental validation of proposed 

controller as well as studying additional control 

outputs such as preload, phase difference, and 

voltage amplitude. 
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