2-D Finite Difference-Time Domain Simulation of Moving Multipole Sources

Takao Tsuchiya^{1†} (¹Faculty of Sci. and Eng., Doshisha Univ.)

1. Introduction

As the speed of trains and airplanes increases, the noise prediction from moving vehicle is required. Some works have been reported that deal with moving omni-directional sources [1] or dipole sources [2]. However, it is necessary to consider more complex directivity for real sources.

This paper focuses on multipole sources that can achieve a variety of directivity. We theoretically derive the radiated sound in the two-dimensional field when a multipole source moves and investigate its validity through numerical experiments using the 2-D finite difference-time domain (FDTD) method.

2. Theory

2.1 Moving monopole source

As shown in Fig. 1, we first consider the case where a monopole source is moving with a constant veelocity v_S in the x-direction. A 2-D fundamental solution is given as [3]

$$p_m \approx j \frac{Q}{4} \sqrt{\frac{2}{\pi kR}} \frac{e^{j(kR - \omega t)}}{\sqrt{1 - M_S \cos \theta}}$$
 (1)

where Q is the source amplitude, $k = \omega/c_0$ is the wave number, ω is the angular frequency of the source, $M_S = v_S/c_0$ is the Mach number of the monopole.

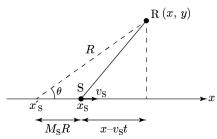
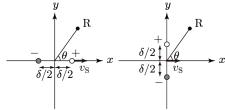


Fig. 1 Positioning of a moving monopole source and a stationary receiver.

2.2 Moving dipole sources

We next consider a dipole with positive and negative sources placed along the *x*-axis with an interval δ as shown in Fig. 2 (a). The radiated sound pressure from a dipole moving in the *x*-direction is given for $k\delta \ll 1$ and $kR \gg 1$ as [3]

$$p_x \approx \delta \frac{\partial p_m}{\partial x} \approx -\frac{k\delta Q}{4} \sqrt{\frac{2}{\pi kR}} \frac{e^{j(kR - \omega t)}}{(1 - M_S \cos \theta)^{3/2}} \cos \theta \ \ (2)$$



(a) x-directional dipole (b) y-directional dipole

Fig. 2 Dipole sources.

Similarly, for the *y*-directional dipole as shown in Fig. 2 (b), the sound pressure is given as

$$p_y \approx \delta \frac{\partial p_m}{\partial y} \approx -\frac{k\delta Q}{4} \sqrt{\frac{2}{\pi kR}} \frac{e^{j(kR - \omega t)}}{(1 - M_S \cos \theta)^{3/2}} \sin \theta$$
 (3)

2.3 Moving multipole sources

The multipole sources are composed by arranging monopole sources with spacing δ as shown in Fig. 3, with weights corresponding to the numbers in the figure. The m th-order multipole sources correspond to the m-th derivative in space. For a moving multipole source of order m in the x-direction and n in the y-direction, the sound pressure is given as

$$p_{x}m_{y}n \approx j(jk)^{(m+n)} \frac{Q\delta^{(m+n)}}{4} \sqrt{\frac{2}{\pi kR}}$$

$$\times \frac{e^{j(kR-\omega t)}}{(1-M_{S}\cos\theta)^{[2(m+n)+1]/2}} \cos^{m}\theta \sin^{n}\theta \qquad (4)$$

$$m=0 \qquad \qquad +1 \qquad \qquad x$$

$$m=1 \qquad \qquad -1 \qquad +1 \qquad \qquad x$$

$$m=2 \qquad \qquad +1 \qquad \qquad 2 \qquad +1 \qquad x$$

$$m=3 \qquad \qquad 1 \qquad +3 \qquad 3 \qquad +1 \qquad x$$

$$m=4 \qquad +1 \qquad 4 \qquad +6 \qquad 4 \qquad +1 \rightarrow x$$

Fig. 3 x-directional multipole sources.

3. Numerical experiments

Numerical experiments are performed by the CE-FDTD (IWB) method [4,5]. Figure 4 shows a 2-D numerical model for the directivity of multipole source. The grid size is Δ =8 mm, time step is Δt =23.53 μ s, and sound speed is c_0 = 340 m/s, so the Courant number χ is 1. The boundary condition is Mur's first order absorbing boundary. S is the center of the multipole source and R is the receiver located on a circle with a radius of 10 m. A 20-cycles sinusoidal burst was emitted from the source.

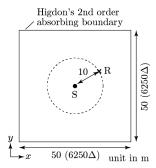


Fig. 4 Numerical model for multipole sources.

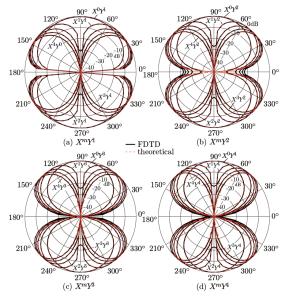


Fig. 5 Directivity of stationary multipole sources (f = 500 Hz, m, $n \le 4$).

Fig. 5 shows the directivity of stationary multipole sources of order m and n up to 4th order. The source frequency was 500 Hz and the source spacing is $\delta = 0.08$ m ($k\delta = 0.739$). The calculation is performed with good accuracy even when the order is increased. Fig. 6 shows the RMS error versus order m, n at source frequencies of 500, 1000, and 2000 Hz. If the order is 3 or less, the error is almost within 1%, and the directivity is well realized.

Figure 7 shows the directivity of multipole sources for source velocities $M_{\rm S} = 0 \sim 0.4$, with order m, n = 0, 1. As the source speed is increased, the front-to-back ratio increases with the source velocity, and the beam width narrows. In particular, the effect of the movement is particularly pronounced when the differential direction (x-direction) coincides with the moving direction of the source. For y-directional multipole sources, the beam is closer to the moving direction as the source speed increases. Figure 8 shows the directivity of multipole sources for source speed $M_{\rm S} = 0, 0.2, 0.4$, and orders 0, 2, and 4. The beam width in the x-direction narrows with the source velocity, and the front-back ratio increases.

These results indicate that this method is effective for the analysis of moving multipole sources.

References

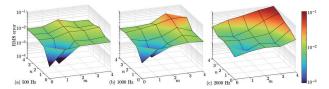


Fig. 6 RMS error against order of spatial differentiation (m, n) for stationary multipole sources.

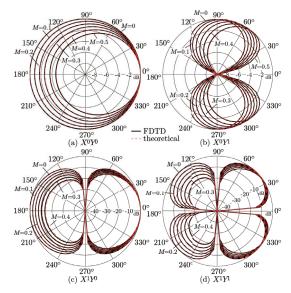


Fig. 7 Directivity of moving multipole sources (m, n = 0, 1, f = 500 Hz).

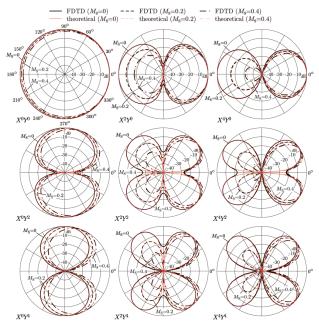


Fig. 8 Directivity of moving multipole sources.

- 1) H. Nakajima et al, J. Acoust. Soc. Jpn. **60**, 717 (2004). [in Japanese].
- 2) Y. Makino et al, Proc. Inter-Noise 2022 (2022).
- 3) T. Tsuchiya, Acoust. Sci. & Tech. 43, 57 (2022).
- 4) K. Kowalczyk et al, IEEE Trans. Audio Speech Lang. Process. **18**, 78 (2010).
- 5) T. Ishii at al., Jpn. J. Appl. Phys. 52, 07HC11 (2013).