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1. Introduction

As the speed of trains and airplanes increases,
the noise prediction from moving vehicle is required.
Some works have been reported that deal with
moving omni-directional sources [1] or dipole
sources [2]. However, it is necessary to consider
more complex directivity for real sources.

This paper focuses on multipole sources that
can achieve a variety of directivity. We theoretically
derive the radiated sound in the two-dimensional
field when a multipole source moves and investigate
its validity through numerical experiments using the
2-D finite difference-time domain (FDTD) method.

2. Theory

2.1 Moving monopole source

As shown in Fig. 1, we first consider the case
where a monopole source is moving with a constant
veelocity vg in the x-direction. A 2-D fundamental
solution is given as [3]
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where Q is the source amplitude, k = w/cy is the
wave number , w is the angular frequency of the
source, Mg = vgs/cy is the Mach number of the
monopole.
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Fig. 1 Positioning of a moving monopole source
and a stationary receiver.

2.2 Moving dipole sources

We next consider a dipole with positive and
negative sources placed along the x-axis with an
interval 6 as shown in Fig. 2 (a). The radiated sound
pressure from a dipole moving in the x-direction is
given for k6 <« 1 and kR > 1 as[3]
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(a) z-directional dipole (b) y-directional dipole
Fig. 2 Dipole sources.

Similarly, for the y-directional dipole as shown in
Fig. 2 (b), the sound pressure is given as
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2.3 Moving multipole sources

The multipole sources are composed by
arranging monopole sources with spacing 6 as shown
in Fig. 3, with weights corresponding to the numbers
in the figure. The m th-order multipole sources
correspond to the m-th derivative in space. For a
moving multipole source of order m in the x-
direction and # in the y-direction, the sound pressure
is given as
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Fig. 3 x-directional multipole sources.

3. Numerical experiments

Numerical experiments are performed by the
CE-FDTD (IWB) method [4,5]. Figure 4 shows a 2-
D numerical model for the directivity of multipole
source. The grid size is A=8 mm, time step is
At=23.53 us, and sound speed is ¢y = 340 m/s, so
the Courant number y is 1. The boundary condition
is Mur's first order absorbing boundary. S is the
center of the multipole source and R is the receiver
located on a circle with a radius of 10 m. A 20-cycles
sinusoidal burst was emitted from the source.
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Fig. 6 RMS error against order of spatial differentiation
y (m, n) for stationary multipole sources.
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Fig. 4 Numerical model for multipole sources.

900 X% 90° X'V
50 “' 150 y ‘\ 30°
N7 N8
180° ==——=-‘%-— 1807 ;;’%‘%vﬁé%é 0°
C N CAD
210° \\“;//‘jﬂl\\\\\\\” l’ 73300 210° \\%‘f&\é 1’/ 330°
\:‘:1‘.A 4?;/ \:{b~ “?'/’
24300° 2= 270300°
(@) XYt — DD (b) Xmy? ,',{/f‘ ‘ )
90° X% - - - theoretical ) 9()°Yq ) A ¥ \ -
10 o %;7\‘%% ___.__=J
Y NS 1800 ol N n 240° "
1IN I o o B
~'//:l\\\ /3300 210°<{ / /330

; ING))

7
I\

g&

(7
\

Fig. 7 Directivity of moving multipole sources (m, n =

o =300 240 ° =
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Fig. 5 Directivity of stationary multipole sources s )

(f=500 Hz, m, n < 4).

Fig. 5 shows the directivity of stationary
multipole sources of order m and n up to 4th order.
The source frequency was 500 Hz and the source
spacing is 6 = 0.08 m (ko = 0.739). The calculation
is performed with good accuracy even when the
order is increased. Fig. 6 shows the RMS error versus
order m, n at source frequencies of 500, 1000, and
2000 Hz. If the order is 3 or less, the error is almost
within 1%, and the directivity is well realized.

Figure 7 shows the directivity of multipole
sources for source velocities Ms =0 ~ 0.4, with order
m, n = 0, 1. As the source speed is increased, the
front-to-back ratio increases with the source velocity,
and the beam width narrows. In particular, the effect
of the movement is particularly pronounced when
the differential direction (x-direction) coincides with
the moving direction of the source. For y-directional
multipole sources, the beam is closer to the moving Fig. 8 Directivity of moving multipole sources.
direction as the source speed increases. Figure 8
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