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1. Introduction

Bridges are designed to withstand different
types of loads, including dead, live, environmental,
and occasional loads during their service period.
Moving vehicles are the main source of the applied
live load on bridges"”. Monitoring bridge health
requires mandatory health inspections every 5 years
and the inspections conducted from administrative
walkways or by hand are difficult in high or unstable
locations, and the results are subjective, dependent
on the inspector's skill level, and may not capture
hidden or progressive damage. To address these
challenges, there 1is a growing interest in
implementing Structural Health Monitoring (SHM)
as an alternative to traditional inspection methods.
SHM involves installing sensors on structures to
measure and analyze sound and vibration, enabling
the assessment of structural damage, monitoring
structural health, and predicting future deterioration
2. By applying SHM to infrastructure facilities,
including bridges managed by municipalities, it
becomes possible to monitor their condition, ensure
safety, and utilize them effectively. Recent progress
in artificial intelligence, especially in deep learning
has reached new heights. So, researchers are utilizing
different machine learning algorithms such as one

class support vector machine, K-means clustering etc.

3 with the combination of SHM data to monitor

bridge health. In this study, we focused on
developing a convolutional neural network (CNN)-
based vibration data analysis framework for bridge
health care monitoring using SAW sensors. The
framework will leverage the power of CNNs to
analyze vibration data collected from bridges and
provide insights into their structural health. By
leveraging the capabilities of CNNs and utilizing
SAW sensors, our proposed CNN-based vibration
data analysis framework achieves significantly better
performance for bridge health care monitoring
compared to the prior methods.

2. Data Simulation

The experimental system Fig. 1 utilizes
aluminum alloy A5052 beams. Vibration induction
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Fig. 1. Vibration Experiment System.

involves an exciter transforming acceleration into
voltage via a geophone. Voltage is then converted to
capacitance using a varactor diode, altering SAW
wave amplitude for vibration measurement. A multi-
function generator (WF1967) generates input signals,
while an oscilloscope (Keysight InfiniiVision
MSOX4034A) captures SAW sensor reflections.
Logging data with a 1 ms sampling interval and 1000
segments for 1-second measurement. In this study,
the CNN dataset comprises attenuation coefficients
for each frequency at different measurement points.
Two sets were created: one without holes (Table 2 in
ref. 3)) and one with holes (Table 3 in ref. 3)), each
consisting of ten measurements per point.

3. Methodology

We have proposed a 1D CNN based
framework for classifying the damaged and
undamaged aluminum alloy from the simulated
SAW data. Fig. 2 shows the proposed frame work.
We performed normalization on the vibration data,
and then passed it to our model. The model has two
convolutional layers, each layer is followed by a
batch normalization and a max pooling layer
respectively. Hence, we get the “conv1” and “conv2”,
which extracts the useful features from our data.
Then the data is flattened using a flatten layer of 448
nodes, followed by two dense layers with Rectified
Linear Unit (ReLU) activation function, a dropout
layer and finally the output layer of only one node
with the sigmoid activation function.

The outcome from the sigmoid activation
function is the probability of the aluminum alloy
being damaged. If the probability is below 0.5
threshold, we consider it as undamaged one.
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Fig. 2. Our proposed CNN-based framework.
5. Experimental Results and discussion

We have conducted our experiment with a
total number of 2000 simulated data. We divided the
dataset into training data and test data with a ratio of
80:20, which gave us 1600 observations for training
the model and 400 for testing. We used the standard
classification metrices to evaluate our results, which
include precision, recall, fl1 score and support. We
have also used confusion matrix to have a detailed
vision of the true positive, false positive, true
negative and false negative outcomes. Finally, using
the same confusion matrix, we calculated our
proposed model’s accuracy score.

Table 1 provides a comprehensive classification
report for our proposed method's experimental
results. The table includes essential metrics such as
Precision, Recall, F1 Score, and Support, offering a
clear overview of the model's classification
performance. With high scores of 0.99 for Precision,
Recall, and F1 Score in both Damaged and
Undamaged classes, the model demonstrates
consistent and accurate identification of instances.
The Support values of 199 for Damaged and 201 for
Undamaged instances indicate the dataset's
distribution. Overall, the table confirms the model's
strong classification capabilities and its ability to
effectively distinguish between different classes.
The confusion matrix in Fig. 4 indicates that a total
of 198 damaged observations were predicted
correctly, while 1 observation that was actually
damaged was predicted as the undamaged class. On
the other hand, there are a total of 3 incorrect
predictions for undamaged observations, and our
CNN model made 198 correct predictions for
undamaged observations. The confusion matrix also
reflects the accuracy of our model, which stands at
99%.

Table 1. Classification report of proposed method.

Class Precision Recall F1 Score Support

Damaged 0.99 0.99 0.99 199

Undamaged 0.99 0.99 0.99 201
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Fig. 4. Confusion Matrix of experimental results.

6. Conclusions

The CNN-based vibration data analysis
framework developed in this research, using SAW
sensors for bridge health care monitoring, has shown
remarkable accuracy in detecting potential structural
damage. Leveraging CNN and SAW sensors, our
framework achieved an accuracy score of 0.99,
surpassing the performance of previous methods,
such as the OCSVM-based approach. This
achievement highlights the potential of our
framework for real-world bridge health care
monitoring scenarios.

By combining CNNs with SAW sensors, this

research showcases the significant impact of
machine learning and sensor technology on
infrastructure  maintenance and safety. The

innovative integration of these technologies holds
the potential to transform the industry, ensuring the
longevity and resilience of critical infrastructure
systems. Our next steps involve testing our vibration
data analysis framework on real bridges to assess its
real-life performance and enhance its accuracy. We
also aim to utilize Transfer Learning to further
optimize our CNN model by leveraging existing
knowledge  for improved efficiency and
effectiveness.
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