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Classification of guided wave propagation in a cylindrical pipe and
verification by the finite element method

Harumichi Sato’ (AIST)

1. Introduction

Cylindrical pipes are widely used in various
industrial applications, rendering their
nondestructive inspection crucial to meet standard or
regulatory requirements. Guided wave propagation
is a very promising method for inspecting cylindrical
pipes nondestructively and in short time, and
propagation in hollow pipes has already been
investigated theoretically by Gazis." The author
classified guided waves as longitudinal mode (L-
mode), flexural mode (F-mode), and torsional mode
(T-mode), of which only the F-mode was found
dependent on the circumferential parameter (n > 0),
as opposed to the L- and T-modes (n = 0) which did
not. Furthermore, Nishino et al. the dispersion
curves of guided waves and proposed that the n-
parameter of the T-mode was not limited to zero.”
The author investigated the dispersion curves of
guided waves and showed that the T-mode could not
be clearly separated from the F-mode for n > 0.” In
this article, we further theoretical results, which are
then verified by the finite element method (FEM).

2 Theoretical results
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Fig. 1. Phase and group velocities of L(0,4),
T(0,3), F(1,6), and F(1,7)

Fig. 1 demonstrates the phase (Fig. 1a) and
group velocities (Fig. 1b) of L(0,4), T(0,3), F(1,6),
and F(1,7) of guided waves propagating in a pipe
whose outer and inner diameters are ¢34 mm and
$28 mm, respectively, and its sound velocities of
longitudinal and transverse waves are 5790 m/s and
3100 m/s, respectively. Fig. 1a shows that L(0,4) and
T(0,3) intersect near 1.226 MHz, whereas F(1,6) and
F(1,7) do not intersect at any frequency. It is also
shown that is impossible to separate the higher order
T-modes (with n > 0) from the F-modes (F(1,6) or
F(1,7)). In Fig. 1a, guided waves surrounded by two
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red circles are considered as F-modes, those
surrounded by two green circles are considered as the
higher order T-modes, and those surrounded by one
blue circle are considered as the mixture modes.
Furthermore, Fig. 1b reveals that group velocity
varies considerably in the mode mixture area.

3 Finite element method and results

An FEM solver with cylindrical coordinates
was developed and used to simulate guided waves
propagating in a pipe. The model was based on a pipe
whose diameters were the same as those found by the
theoretical analysis and whose length was 1000 mm.
The z =0 and z = 1000 mm surfaces were set as
the periodic boundary conditions. The sound
velocities of the longitudinal and transverse waves
were the same as those of the theoretical analysis,
and the density was 7910 kg/m’. The model was
divided by the eight-node hexahedral elements
shown in Fig. 2a, and the surface set as the force
boundary condition was divided by the four-node
quadrilateral elements shown in Fig.3a. These
shapes are presented in local coordinate systems in
Figs. 2b and 3b. The interpolation functions were
defined as follows:
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The size of the hexahedral elements is Ar = Az =

0.25 mm, 40 =mw/212 and the size of the
quadrilateral elements is Ar = Az = 0.25 mm.
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Fig. 2. Eight-node hexahedral element
We then used an explicit method in the solver.
The finite element formulation for time transit
problem was expressed by the following equation®
[M]{i} + [K]{u} = {F} :
where [M] is the mass matrix, [K] is the stiffness
matrix, {u} is the nodal displacement vector, and -



denotes the time derivative. Entries of [K] were
expressed as follows:

[K] = X2-1 J,[BI"[D][B]dv :
where XJ_; expresses the summation of all
elements and [D] is the elastic stiffness matrix.
Displacements in the 7,6, and z coordinates were
expressed as u,,ug, and wu,, respectively. In
addition, we know that the strain tensor in the
cylindrical coordinates is defined by the equations
below.
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[B] is determined by the strain tensor, and in this
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Moreover, the entries of {F} were expressed by the
following equation

{F} = Xees, J;_,INI"{T}ds ,
where ZX.es, expresses the summation of all
boundary integrals, {T} is the force boundary
condition, and [N] is a 3 X 12 matrix whose
entries are shown below:

NS 0 0 N - 0 0
[NJ]=|0 Nf 0 0 - Nf 0
0O 0 Nf 0 - 0 N§

To generate guided waves, the force boundary
condition simulated the phase velocity scanning
method™® was set on the surface of the model:

{Ty' =0 0 T3)
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using the following parameters:

A3 =10 MPa, f=12257 MHz, v
57949 m/s, zyp =43 mm, t, =735 ps, ¢
10.0 mm, ¢, = 1.73 ps,and n = 1.
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Fig. 3. Four-node quadrilateral element
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Fig. 4. Group velocity and result of FEM.

Fig. 4 shows the group velocities obtained by
the theoretical analysis (represented by curves) and
the FEM result (represented by the contour map). It
can be seen that the group velocities of F(1,2), F(1,3),
F(1,8), and F(1,10) also vary considerably in the
mode mixture areas. The contour map is a wavelet
transform of ug at z =250 mm and 6 = /2.
The FEM result is in good agreement with the
theoretical results. Consequently, we consider that
the theoretical result is reliable and the Gazis’s
classification is more acceptable.
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