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1. Introduction 

High-power resonant-type ultrasonic 
transducers play a vital role in various industrial 
applications. They are essential for processes 
including ultrasonic welding, jointing, and cutting, 
as well as ultrasonic motors. These applications 
require rapid control due to the short processing 
time.1) The driving frequency is commonly used to 
control vibration; however, since the frequency has a 
nonlinear relationship with vibration, conventional 
linear control, such as PID control, often results in 
suboptimal control, which sacrifices quick response. 
In addition, the resonance frequency can shift under 
high-power conditions, which causes the jump 
phenomenon and hysteresis to the frequency 
characteristics, making control even more difficult.  

To overcome these complexities, this work 
proposes a deep reinforcement learning system that 
effectively controls high-power transducers.  

  
2. Control system 

The bolted Langevin transducer (BLT) 
(FBL28302SSF-FC, Fuji Ceramics Corporation) 
was employed as the control subject. This transducer 
features a 30 mm diameter and 91 mm length.  

The system shown in Fig. 1 is controlled by a 
microcontroller (ESP32-S3-DevKitC, Espressif 
Systems) on a control board, which commands direct 
digital synthesizers (DDSs) for sinusoidal output, 
which is used for the driving signal. The DDS 
driving signal is amplified by bipolar amplifiers 
(HSA4052, NF Corp.) to power the BLT at 60Vpp.  

The driving current is converted to a voltage 
signal via a transformer, which is then transformed 
into two direct voltage signals by a phase-sensitive 
detector (PSD). The PSD produces output voltages 
proportional to active and reactive driving currents. 

 
3. Characteristic measurement of BLT 
3.1 Quasi-static measurement 

Figure 2a shows the admittance of BLT under 

4 Vpp voltage, measured by an impedance analyzer 
(4249A, Keysight Technologies). It indicates 
resonance frequency at 𝑓𝑓𝑟𝑟 =28.669 kHz, half-width 
at 3 Hz. thus, the quality factor at 𝑄𝑄 = 9600. The 
theoretical time constant of the vibration growth can 
be calculated as 𝜏𝜏 = 𝑄𝑄/𝜋𝜋𝑓𝑓𝑟𝑟 =107 ms. 

Meanwhile, the admittance under 60 Vpp 
voltage was measured using the system described in 
the previous section, as shown in Fig. 2b, which 
shows the jumping phenomenon and hysteresis. 

 
3.2 Integral control response 

To show the difficulty of the frequency control, 
the driving current was controlled by integral control 
as formulated with 

𝑓𝑓 = 𝑓𝑓0 + 𝐾𝐾𝑖𝑖 ��𝐼𝐼 − 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑑𝑑𝑑𝑑 
where 𝐾𝐾𝑖𝑖 =700 Hz/A ･ s, 𝑓𝑓0 =28.7 kHz, and 
𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=0.3,0.5,0.7,0.9 A, as shown in Fig 3. 

 
Although the integral control converged in 400 

 
Fig. 1  Experimental setup. 

  

 
Fig. 2  Admittance of BLT a) 4Vpp, b) 60 Vpp  

 

 
Fig. 3  Response of the integral control: a) current 
amplitude(bold) and target (dashed), b) frequency.  

 



ms without overshooting at 0.3 A target, it suffered 
continuous ringing at 0.5 A and completely diverged 
at 0.9 A. These results demonstrate the difficulty of 
the control due to the transducer's nonlinearity.  
4. Deep reinforcement learning control 
4.1 Formulation of Malkov decision process 

Reinforcement Learning is a type of machine 
learning that optimizes a controller's behavior within 
a Markov Decision Process (MDP). The current 
control is modeled as an MDP, illustrated in Fig. 4. 

 
In an MDP, the controller (agent) interacts 

with the environment over several steps. At each step 
𝑛𝑛, the agent receives a state 𝑠𝑠𝑛𝑛 and takes an action 
𝑎𝑎𝑛𝑛 based on that state. The environment then 
provides a reward 𝑟𝑟𝑛𝑛 and updates the state to 𝑠𝑠𝑛𝑛+1. 
This process repeats every 1 ms, creating a sequence 
of states, actions, and rewards known as an episode. 

The ultimate goal of reinforcement learning is 
to maximize the cumulative reward in the episode, 
defined as  

𝑅𝑅 = �𝛾𝛾𝑛𝑛𝑟𝑟𝑛𝑛
𝑛𝑛

 

where 𝛾𝛾 is the discount factor in the range of  0 <
𝛾𝛾 < 1. In this work, the reward is defined as 

𝑟𝑟 = −�𝐼𝐼0 − 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝛽𝛽 

where 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the target, 𝛽𝛽 = 0.5 is constant.  
Meanwhile, the state has four components: the 

active and reactive part of the driving current Re(𝐼𝐼) 
and Im(𝐼𝐼) , the target amplitude 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , and the 
driving frequency 𝑓𝑓 . Then, the agent decides the 
action 𝑎𝑎 , which determines the increment of the 
driving frequency as ∆𝑓𝑓 = 𝐷𝐷𝐷𝐷, where 𝐷𝐷 =10 Hz is 
the frequency step range. 
 
4.2 Soft actor-critic networks 3) 

The agent’s action in this system is determined 
by a probability distribution 𝜋𝜋(𝑎𝑎|𝑠𝑠) , implemented 
through an actor neural network. The input layer 
receives the state, and through a hidden layer, the 
output layer produces two outputs: mean 𝜇𝜇 and the 
logarithm of variance ln𝜎𝜎. A random number 𝑢𝑢 is 
then sampled from a Gaussian distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎), 
and the action is calculated as 𝑎𝑎 = tanh𝑢𝑢. 

 Training is conducted over 1000 episodes, 
each with 500 steps, with a randomly set target 
current between 0.1 A and 1 A. 

 
5. Control results 

After training, the agent controls the frequency 

using the trained parameters for target currents 
𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =0.3, 0.5, 0.7, 0.9 A. The driving current 
response is shown in Fig. 5. 

 
The responses almost follow the first-order 

system's response, reaching the target in 100 ms in 
the case of 0.9 A target current. This is almost equal 
to the theoretical time constant, which indicates that 
the DRL frequency control optimally tunes the 
frequency against the nonlinear vibration system. 

 
6. Conclusion 

This work demonstrates the effectiveness of a 
deep reinforcement learning (DRL) approach for 
controlling high-power ultrasonic transducers using 
only frequency modulation. By formulating the 
control problem as a Markov Decision Process 
(MDP), the DRL system successfully adapts to the 
nonlinear characteristics inherent to high-power 
ultrasonic vibrations. The results show that the DRL 
control achieves near-optimal performance, with 
response times closely matching the theoretical 
limits. This approach offers a robust solution for 
industrial applications requiring rapid ultrasonic 
transducer control without increasing the complexity 
of the driving circuit. Our future works include 1) 
validating the DRL method under external 
conditions such as temperature and boundary 
conditions and 2) applying the DRL method to 
different transducers, including bending or sheer 
transducers and ultrasonic motors. 
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Fig. 4  Malkov decision process formulation 

 
Fig. 5  Result of the DRL control: a) current 
amplitude(bold) and target (dashed), b) frequency.  
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