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1. Introduction 

Over the past three decades, extensive studies 
have focused on acoustic waves and phonons in 
phononic crystals [1]. The distinctive characteristics 
of phonons in these structures are intrinsically tied to 
the presence of phononic bandgaps, which arise from 
Bragg reflections of phonons by the artificially 
designed periodic structures. In many studies, the 
band structure was derived by calculating the 
frequencies of several allowed waves as eigenvalues 
for a given wave number. In contrast to 
eigenfrequencies, the detailed characteristics of 
eigenvectors have only recently begun to receive 
significant attention.  

Meanwhile, topological insulators have gained 
significant interest in recent years. The concepts 
utilized in topological insulators have been applied 
to photonic and phononic crystals [2] after being 
discovered in electronic systems. In particular, 
phenomena such as band inversion are discussed 
based on the eigenvectors of the bands. It is valuable 
to examine the eigenvectors of phonons in phononic 
crystals from a fresh perspective. In the present paper, 
we focus on the band-edge states in one-dimensional 
phononic crystals and examine the relationship 
between their symmetry and singularities. 

2. Theoretical method 

The calculation method we used is based on the 
transfer matrix method [3]. The displacement and 
velocity fields are obtained by solving the elastic 
equation for each layer of the one-dimensional 
phononic crystal. By applying Bloch's theorem along 
with boundary conditions that ensure continuity of 
displacement and stress at the interface, the 
eigenfrequencies and eigenvectors can be 
determined. 

 

 
 

 
 

Fig. 1 Phonon dispersion relations for (a) PC1 and (b) 
PC2. The band indexes are indicated by red numbers, 
and the gaps are numbered as black numbers. The 
symmetry at the band edges is marked with S or A, and 
the blue dots indicate singularities. 



3. Numerical results and discussions  

Figure 1 shows the phononic band structures 
calculated for two one-dimensional phononic 
crystals PC1 and PC2, which are composed of GaAs 
and AlAs. In PC1 (PC2), the thicknesses of the GaAs 
and AlAs are assumed to be 8.48 (7.31) nm and 6.39 
(7.82) nm, respectively. In PC1 and PC2, the layer 
thickness is selected to ensure that the center 
frequency of the gap remains unchanged. 
  From the components of the calculated 
eigenvectors, we can examine the symmetry at each 
band edge of PC1 and PC2, which are marked as S 
and A in Fig. 1, respectively, depending on whether 
they are symmetric or antisymmetric. The symmetry 
of the upper and lower band edges on either side of 
the band gap is different. This can be explained based 
on analytical calculations. 
  On the other hand, there exist bands whose upper 
and lower edges have the same symmetry and bands 
whose upper and lower edges have different 
symmetries. This can be explained topologically 
using the Zak phase. For the mth band, the Zak phase 
can be defined as 
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Here, the part in brackets is the Berry connection 

and ( ),m qu x   is the periodic part of the Bloch 

function that represents the displacement field, i.e.,  
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where q is the Bloch wave number. The Zak phases 
calculated using Eq.(1) for each band are shown in 
green in Fig. 1. 

The Zak phase defined by Eq. (1) is zero if 
( ),m qu x  is a continuous function of q. On the other 

hand, it can be shown that it is π if ( ),m qu x  has a 
singularity, which are indicated by blue dots in Fig. 
1. When the Zak phase of a band is 0, the symmetry 
is the same at both ends of the band, but it is different 
for a band with a Zak phase of π. 
  In PC1, singularities occur in the 2nd, 5th, and 7th 
bands, while in PC2, they occur in the 2nd, 4th, and 

6th bands. The symmetry undergoes changes as one 
passes through these bands.  

Next, in order to investigate the localized modes 
occurring at the interface of the system in which PC1 
and PC2 are connected, the calculated transmittance 
is shown in Fig. 2. Resonant peaks due to localized 
modes are observed in the fifth and seventh gaps, 
which can be understood based on the bulk-edge 
correspondence. 
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Fig. 2 Transmission spectrum of phonons 
propagating through a PC1-PC2 junction system. 
The number of periods in both PC1 and PC2 is 
chosen to be 10. 
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