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1. Introduction 

Autonomous mobile robots are being 
introduced to automate factory automation and 
construction. Autonomous robots need to estimate 
their position in order to plan their path. Light 
detection and ranging (LiDAR), millimeter wave 
radar, and ultrasonic sensors have been proposed as 
typical sensors for self-position estimation11). In 
particular, ultrasonic sensors have been adopted as 
sensing devices for various autonomous mobile 
applications because they can be installed at a lower 
cost than other methods. On the other hand, 
ultrasonic sensors have poorer angular resolution 
than other sensors. They are also prone to false 
detection of reflected waves due to multipath 
interference. These problems make it challenging to 
use ultrasonic sensors when building advanced 
autonomous mobility applications. 

Therefore, we proposed a method to measure 
reflected waves and estimate self-position using the 
Doppler effect2). This method estimates self-position 
by matching echo images obtained by Doppler shift 
and impulse response measurements with map 
images obtained by pre-measurement. The map 
image is the sum of the echo images at the position 
coordinates accurately measured during the mapping 
phase. This map can predict the echo images 
measured at arbitrary position coordinates for which 
no echo images have been measured. This mapping 
method can use the features of single reflections and 
retroreflections, but it loses the features of multiple 
reflections. This paper proposes a statistical method 
to generate predictive echo images with high 
similarity to measured echo images. The finite 
difference time domain (FDTD) method is used to 
generate training and evaluation data for the echo 
images, and the similarity between the predicted 
echo image output by the image generation model 
and the echo image obtained by the FDTD method is 
evaluated. 
 

2. Proposed method 

Figure 1 shows a schematic diagram of the 
proposed method. The proposed method trains an 

image generation model using as input a set of data 
corresponding to the echo images measured by the 
Doppler-compensated cross-correlation2) method 
and the position coordinates at which the echo 
images were measured. The image generation model 
comprises a convolutional variational autoencoder 
(Convolutional 𝛽 -VAE)3) and a linear regression 
model with a polynomial basis function. The training 
of the proposed method is performed in two steps. 
First, unsupervised convolutional 𝛽 -VAE encoder 
and decoder training is performed on echo images. 
This unsupervised dimensionality compression 
method maps the features of the input image 𝐻 to a 
low-dimensional latent variable 𝒛 ∈ ℝ𝑑 , where 𝒛 
is constrained to behave as a random variable 
following a multivariate normal distribution, and the 
model is trained. After the training of the 
convolutional 𝛽 -VAE is completed, supervised 
learning of the linear regression model is performed. 
The basis function is denoted by  
𝒇(𝑥, 𝑦, 𝜙) = 
[1 𝑥 ⋯ 𝑥𝑄 𝑦 ⋯ 𝑦𝑄 𝜙 ⋯ 𝜙𝑄]T. (1) 
The objective variable of the linear regression model 
is the latent variable 𝒛 , which is output when the 
echo image is input to the 𝛽 -VAE model, and the 
explanatory variables are the position coordinates 𝑥, 

Fig. 1  Schematic diagram of the proposed method. 
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𝑦, and 𝜙 at which the echo image was measured. 
The trained image generation model is used in 

the following steps. First, the position coordinates 
𝑥∗ , 𝑦∗ , and 𝜙∗  to be predicted are input into the 
linear regression model. The predicted echo image is 
the resulting output image when the latent variable 
𝒛∗ is input to the decoder model. 
 

3. Simulation setup 

The accuracy of the proposed method was 
verified by FDTD simulation4): echo images were 
measured while moving the transmitter and receiver 
point positions within the FDTD simulation, and the 
echo images corresponding to the transmitter and 
receiver point positions were used as the data set. 
Figure 2(a) shows the path of movement of the 
transmitter/receiver used to create the training data 
and the position of the wall surface. Figure 2(b) 
shows the path of movement of the 
transmitter/receiver and the positions of the wall 
surface used to create the evaluation data. Table I 
shows the simulation conditions and signal 
processing parameters. 
 

4. Results and discussions 

We evaluated the similarity of the predicted 
echo images generated by calculating the mutual 
information content between the actual and predicted 
echo images observed in the simulation. When echo 
images are generated for self-position estimation, the 
similarity should be high when the actual position 
where the echo image was measured and the position 
where the predicted echo image was generated match. 
Therefore, we define an index to evaluate the ability 
of the generated images to identify space. It is 
denoted by  
𝐼diff = 𝐼[𝐻t(𝑥∗, 𝑦∗, 𝜙∗); 𝐻(𝑥∗, 𝑦∗, 𝜙∗)] 

−𝐼[𝐻t(𝑥∗ +𝑤, 𝑦∗ + 𝑤,𝜙∗);𝐻(𝑥∗, 𝑦∗, 𝜙∗)], (2) 

where 𝐼  is the mutual information content, 
𝐻t(𝑥∗, 𝑦∗, 𝜙∗)  is the actual echo image, 
𝐻(𝑥∗, 𝑦∗, 𝜙∗) is the predicted echo image, and 𝑤 is 
a random variable according to 𝒩(0,1) . Figure 3 
shows a histogram of 𝐼diff . The shape of the 
distribution of the proposed method extends to larger 
values compared to the existing methods; the size of 
𝐼diff indicates the spatial identification capability of 
the generated images. This capability is crucial for 
accurate self-position estimation in autonomous 
mobile robotics, and our method's superior spatial 
identification capability suggests its potential to 
improve such systems' performance significantly. 
 
5. Conclusion 

This paper proposes a statistical method for 
generating predictive echo images for self-position 
estimation. The proposed method is based on 

convolutional 𝛽-VAE and linear regression model. 
The validation results using FDTD simulations 
suggest that the proposed method has a better spatial 
identification capability than the existing methods. 
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Fig. 2 (a) Path of movement of the 
transmitter/receiver used to create the training data, 

(b) path of movement of the transmitter/receiver 

used to create the evaluation data. 

 

Fig. 3 Histogram of 𝐼diff. 

 
Table I Signal processing parameters. 

Sampling frequency (kHz) 𝑓s 40 

Sequence length 𝐿 1024 

Carrier frequency (kHz) 𝑓c 10 

Chip rate (kHz) 1/𝑇c 10 

Number of iterations 𝑀 6 

Number of arrival directions 𝑁 29 

Dimension of latent variables 𝑑 16 

Degree of polynomial 𝑄 6 

 


	ISTSProgramNumber: 
	0: 
	7871032810080532: 1P2-13




