Consideration of Feedback Mechanism in Depolarizing Field in Dielectric Material and Piezoelectric Transducer

Michio Ohki (Natl. Def. Acad. of Japan)

1. Introduction

The depolarizing field strongly affects the characteristics of dielectric and piezoelectric materials and devices.

The permittivity ε of a dielectric material should be measured in the environment in which the depolarization coefficient is maximal. In this study, firstly, a feedback system to estimate the permittivity is considered, and by comparing a similar feedback system to estimate the permeability μ of a magnetic material, it is clarified that appropriate estimates of ε and μ can be obtained when no feedback is provided and that what is called *E-B* correspondence is more essential than *E-H* one.

In a piezoelectric transducer, the depolarizing field causes another effect on the characteristics of mechanical wave, and the behavior of the transducer is classified into two different types: that with longitudinal (L-) effect and that with transverse (T-) effect. In this study, another type of 'feedback effect' of depolarizing field is considered, which gives a more reasonable explanation for the characteristics of piezoelectric transducer.

2. Feedback system for measurement of permittivity and permeability

Fig. 1: Feedback diagram for measuring $1/\varepsilon$. N (0 < N < 1) is an (averaged) depolarizing coefficient, which affects the measurement via the feedback of depolarizing field from the output (electric field) to the input (dielectric flux density). $N \rightarrow 0$ for an infinitely long rod, and $N \rightarrow 1$ for an infinitely thin plate.

Figure 1 shows the effect of feedback of depolarizing field on measuring $1/\varepsilon$, where E_0 is an input electric field, N (0 < N < 1) is an (averaged) depolarizing coefficient, P is a generated polarization, and a dielectric flux density D is related with a total electric field E as $D = \varepsilon E = \varepsilon_0 E + P$. A portion of the output is fed back into the input as (1 - N)P.

From the closed-loop characteristic, in which the output $\boldsymbol{E}\left(=\frac{\boldsymbol{D}-\boldsymbol{P}}{\varepsilon_0}\right) = \boldsymbol{E}_0 - N\frac{\boldsymbol{P}}{\varepsilon_0}$ and the input $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E}_0 + (1-N)\boldsymbol{P}$, an estimated value of $1/\varepsilon$ is obtained as a function of N:

$$\frac{1}{\varepsilon}(N) = \frac{E_0 - N\frac{P}{\varepsilon_0}}{\varepsilon_0(E_0 + (1 - N)\frac{P}{\varepsilon_0})},\tag{1}$$

which provides a correct value of $1/\varepsilon$ when $N \to 1$; that is, when no output is fed back into the input.

For comparison, the effect of demagnetizing field on the measurement of a permeability μ is schematized in Fig. 2, where H_0 is an input magnetic field strength, N (0 < N < 1) is an averaged demagnetizing coefficient, \boldsymbol{M} is a generated magnetization, and a magnetic field \boldsymbol{B} is related with a total magnetic field strength \boldsymbol{H} as $\boldsymbol{B} = \mu \boldsymbol{H} = \mu_0 (\boldsymbol{H} + \boldsymbol{M})$, where $\boldsymbol{H} = H_0 - N\boldsymbol{M}$ due to the feedback of \boldsymbol{M} by $-N\boldsymbol{M}$. From Fig. 2, μ is estimated as

$$\mu(N) = \frac{\mu_0(H_0 + (1 - N)M)}{H_0 - NM},$$
(2)

in which a correct estimate of μ can be obtained when $N \rightarrow 0$ without any feedback effect.

Fig. 2: Feedback diagram to estimate μ .

The comparison of the above feedback systems endorses the correspondence of $E \leftrightarrow B$, rather than that of $E \leftrightarrow H$, which has often been discussed in the interpretation of electromagnetic theory.

E-mail: michio_ohki@ieee.org

3. Influence of depolarization field on piezoelectric transducers

Fig. 3: Equivalent circuit of a piezoelectric transducer at $\omega \rightarrow 0$. $\alpha = 1$ for L-effect and $\alpha = 0$ for T-effect.

Figure 3 shows the equivalent circuit of a piezoelectric transducer at low frequency limit, $\omega \rightarrow 0$, in which C_0 and C are the dielectric capacitance and the 'intrinsic' elastic equivalent capacitance, respectively. The electromechanical coupling coefficient, $k^2 = C'/(C_0 + C') = (1/C_0)/(1/C_0 + 1/C')$, is calculated as

$$k^{2} = \frac{C}{C_{0} + (1 - \alpha)C} \qquad (0 \le k^{2} < 1), \qquad (3)$$

where $\alpha = 1$ for L-effect, and $\alpha = 0$ for T-effect.

The characteristics of piezoelectric transducers can schematically be classified into four patterns by considering whether L- or T-effect works and whether the E-terminal in Fig. 3 is opened or shorted, as shown in Fig. 4.

Fig. 4: Schematic diagram of the relationship among the surface charges on electrodes, polarization P, and wavenumber vector \mathbf{k} . (a), (a') L-effect ($P \parallel \mathbf{k}$) for opened and shorted states, respectively. (b), (b') T-effect ($P \perp \mathbf{k}$) for shorted and opened states, respectively.

In the L-effect ($\boldsymbol{P} \parallel \boldsymbol{k}$), the opened state is regarded as the intrinsic state, as shown in Fig. 4(a), due to the continuity of \boldsymbol{D} normal to \boldsymbol{k} -planes that are perpendicular to \boldsymbol{k} . In the shorted state, Coulomb's force from the residual charges on the electrodes elongates the wavelength of polarization wave λ , and the elasticity is softened, as shown in Fig. 4(a'), which is represented by $-C_0$ ($\alpha = 1$) in Fig. 3.

In the T-effect $(\mathbf{P} \perp \mathbf{k})$, the shorted state is regarded as the intrinsic state, as shown in Fig. 4(b), due to the continuity of \mathbf{E} tangential to \mathbf{k} -planes. In the opened state, Coulomb's force from the surplus charges on the electrodes condenses \mathbf{P} and the elasticity is stiffened, while λ is invariant, as shown in Fig. 4(b'), which is represented by a series connection of C_0 in Fig. 3.

Fig. 5: Primary Coulomb interaction between the surface charges and *P*, and secondary Coulomb interaction inside *P* as a negative feedback process.

As P becomes larger, a negative feedback process is expected to occur, as shown in Fig. 5, moderating the decrease of elastic stiffness, especially in the case of a high- k^2 material. This process is represented by (I) the depression of the effect of negative capacitance $-C_0$ in the L-effect and (II) the addition of another positive capacitance in series in the T-effect, represented in common as

$$\alpha \to \alpha + \Delta \alpha \qquad (\Delta \alpha < 0) \tag{4}$$

In the L-effect ($\alpha = 1$), unnaturally, the wavelength $\lambda \to \infty$ as $C \to C_0$ at the electrical resonance (shorted state), and $k^2 > 1$ in eq. (3) if $C > C_0$. Nature is selfconsistent, and the above negative feedback effect keeps the value of λ and k^2 appropriately. (In addition, while the total elastic capacitance is depressed by the effect of $\Delta \alpha (< 0)$, the inertial inductance is expected to be enhanced by way of compensation.)