Intrinsic k_{33}^2 evaluation method from HBAR without substrate removal using ratio of dielectric constant ε^T and ε^S

Kohei Ekida^{1, 2†}, Yohkoh Shimano^{1, 2}, and Takahiko Yanagitani^{1, 2*} (¹Waseda Univ.; ²ZAIKEN)

1. Background

The electromechanical coupling coefficient k^2 is an important indicator in evaluating the performance of piezoelectric devices. Generally, a free-standing film structure is used to assess the k^2 value¹). On the other hand, several evaluation methods have been reported that evaluate k^2 from the film/wafer structure (HBAR) without substrate removal ²⁻⁴).

In this study, we propose a new method to evaluate the electromechanical coupling coefficient k_{33}^2 without substrate removal. This method uses the dielectric constant of the piezoelectric material.

2. Evaluation method

Dielectric constants of piezoelectric material are categorized into two types: the dielectric constant under constant stress (ε^{T}) and the dielectric constant under constant strain (ε^{S}). At frequencies lower than the mechanical resonant frequency, the dielectric constant is ε^{T} , which includes the piezoelectric effect. In contrast, in the higher frequency range, the dielectric constant is ε^{S} , which does not include the piezoelectric effect due to relaxation phenomena. In this paper, the capacitances calculated from the values of ε^T and ε^S are denoted as C^T and C^S , respectively. As shown in Fig. 1, the admittance of C^{T} accords with that of FBAR at frequencies lower than the fundamental mode resonant frequency (red and green lines), and the admittance of C^{δ} is in good agreement with that of FBAR at frequencies higher than the resonant frequency (red and blue lines). From equation (1), the k_{33}^2 can be calculated by the ratio of these two dielectric constants.

$$k_{33}^{2} = \frac{\varepsilon^{T} - \varepsilon^{S}}{\varepsilon^{T}} = \frac{C^{T} - C^{S}}{C^{T}}$$
(1)

We explain how to extract C^T and C^S . The capacitance C^T with dielectric constant ε^T can be extracted from the slope obtained by a linear approximation in the low frequency range of admittance. In contrast, the capacitance C^S with dielectric constant ε^S cannot be estimated by the same approach due to the effect of electrode resistance. Therefore we calculated C^T from the *RLC* electric resonance. We intentionally insert parasitic inductance L_s in calculation to generate *RLC*

resonance as shown in **Fig. 2**. Since $f_r=1/(2\pi\sqrt{L_sC^s})$ in the real part of admittance, we can estimate the C^s and k_{33}^2 . **Fig. 3** shows the theoretical relationship between output k_{33}^2 value and *RLC* resonant frequency on simulation with Mason's equivalent circuit model. We can see the oscillation for the *RLC* resonant frequency. This phenomenon can be attributed to the peak shift of the *RLC* resonant frequency caused by the mechanical resonance peaks. Therefore, in this method, we extract the k_{33}^2 by *RLC* resonance at frequencies such as the 2^{nd} or 4^{th} overtone mode of mechanical resonant, avoiding the effect of mechanical resonance.

Fig. 1 Comparison of the theoretical admittance of capacitance C^{T} and C^{S} to the admittance of FBAR calculated by the Mason model.

Fig. 2 Generation of RLC resonance by inserting L_s

Fig. 3 RLC resonance frequency dependence of k_{33}^2 in this method (Mason model)

3. Result

We extracted k_{33}^2 of the piezoelectric thin film using this method from HBAR (AlN/Ti/silica glass substrate). As shown in **Fig. 4**, the calculated k_{33}^2 oscillates for the *RLC* resonance frequency. Therefore, k_{33}^2 was extracted from the frequency of the 2nd overtone mode, and k_{33}^2 was estimated to be 7.55% for AlN thin film. As a reference, the conversion loss method²⁻⁴) was used for the same piezoelectric thin film. As a result, the k_t^2 by the conversion loss method was estimated to be 6.3% for the AlN thin film. The estimated value by the dielectric constant ratio method was slightly larger than that by the conversion loss method.

The intrinsic electromechanical coupling coefficient k_{33}^2 of a block structure of the piezoelectric material and the electromechanical coupling coefficient k_t^2 of a thin plate are not so different for the small piezoelectric material. Therefore, the comparison between the two k^2 are considered acceptable.

Fig. 4 *RLC* resonance frequency dependence of k_{33}^2 measured by this method (AlN thin film)

4. Conclusion

We propose a method to evaluate k_{33}^2 using the ratio of the dielectric constant ε^T and ε^S . In this report, we confirmed that the method is valid experimentally. We would like to further improve the accuracy of the evaluation in the future.

Acknowledgment

This work was supported by JST A-STEP (No. JPMJTR231C).

References

- 1) "IEEE Standard on Piezoelectricity (ANSI/IEEE Std 176-1987)," IEEE TUFFC 43, 719 (1996).
- 2) T. Yanagitani, M. Kiuchi, M. Matsukawa and Y. Watanabe, J. Appl. Phys., 024110 (2007).
- Y. Zhang, Z. Wang and J. D. N. Cheeke, IEEE Trans. Ultrason., Ferroelect., and Freq. Contr., p. 321 (2003).
- 4) M. Totsuka, T. Yanagitani, proc. IEEE Ultrason. Symp., (2008).